Low-temperature synthesis and growth model of thin Mo2C crystals on indium

Date

2021-04-15

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
7
downloads

Citation Stats

Series

Abstract

Chemical vapor deposition is a promising technique to produce Mo2C crystals with large area, controlled thickness, and reduced defect density. Typically, liquid Cu is used as a catalyst substrate; however, its high melting temperature (1085 °C) prompted research groups to search for alternatives. In this study, we report the synthesis of large-area thin Mo2C crystals at lower temperatures using liquid In, which is also advantageous with respect to the transfer process due to its facile etching. SEM, EDS, Raman spectroscopy, XPS, and XRD studies show that hexagonal Mo2C crystals, which are orthorhombic, grow along the [100] direction together with an amorphous carbon thin film on In. The growth mechanism is examined and discussed in detail, and a model is proposed. AFM studies agree well with the proposed model, showing that the vertical thickness of the Mo2C crystals decreases inversely with the thickness of In for a given reaction time.

Source Title

Scientific Reports

Publisher

Nature Publishing Group

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English