Raman enhancement on a broadband meta-surface
buir.contributor.author | Okyay, Ali Kemal | |
dc.citation.epage | 6861 | en_US |
dc.citation.issueNumber | 8 | en_US |
dc.citation.spage | 6852 | en_US |
dc.citation.volumeNumber | 6 | en_US |
dc.contributor.author | Ayas S. | en_US |
dc.contributor.author | Güner, H. | en_US |
dc.contributor.author | Türker, B. | en_US |
dc.contributor.author | Ekiz, O. O. | en_US |
dc.contributor.author | Dirisaglik, F. | en_US |
dc.contributor.author | Okyay, Ali Kemal | en_US |
dc.contributor.author | Dâna, A. | en_US |
dc.date.accessioned | 2016-02-08T09:45:11Z | |
dc.date.available | 2016-02-08T09:45:11Z | |
dc.date.issued | 2012-07-30 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:45:11Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012 | en |
dc.identifier.doi | 10.1021/nn301665a | en_US |
dc.identifier.issn | 1936-0851 | |
dc.identifier.uri | http://hdl.handle.net/11693/21355 | |
dc.language.iso | English | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1021/nn301665a | en_US |
dc.source.title | ACS Nano | en_US |
dc.subject | Coupled plasmonic modes | en_US |
dc.subject | Metamaterials | en_US |
dc.subject | Plasmonics | en_US |
dc.subject | Surface-enhanced Raman spectroscopy | en_US |
dc.subject | Basis of calculation | en_US |
dc.subject | Electromagnetic modes | en_US |
dc.subject | Field enhancement | en_US |
dc.subject | Localized modes | en_US |
dc.subject | Nano scale | en_US |
dc.subject | Nonlinear optical process | en_US |
dc.subject | Optical resonance | en_US |
dc.subject | Photonic properties | en_US |
dc.subject | Plasmonic | en_US |
dc.subject | Plasmonic metamaterials | en_US |
dc.subject | Plasmonics | en_US |
dc.subject | Proper design | en_US |
dc.subject | Raman enhancement | en_US |
dc.subject | Scattering frequency | en_US |
dc.subject | Spatial uniformity | en_US |
dc.subject | Strong coupling | en_US |
dc.subject | Sub-wavelength | en_US |
dc.subject | Surface enhanced Raman scattering (SERS) | en_US |
dc.subject | Surface enhanced Raman spectroscopy | en_US |
dc.subject | Unit cells | en_US |
dc.subject | Band structure | en_US |
dc.subject | Metamaterials | en_US |
dc.subject | Molecules | en_US |
dc.subject | Quantum optics | en_US |
dc.subject | Raman scattering | en_US |
dc.subject | Raman spectroscopy | en_US |
dc.subject | Plasmons | en_US |
dc.subject | Metal nanoparticle | en_US |
dc.subject | Chemical model | en_US |
dc.subject | Chemical structure | en_US |
dc.subject | Chemistry | en_US |
dc.subject | Computer simulation | en_US |
dc.subject | Light | en_US |
dc.subject | Materials testing | en_US |
dc.subject | Methodology | en_US |
dc.subject | Radiation scattering | en_US |
dc.subject | Surface plasmon resonance | en_US |
dc.subject | Ultrastructure | en_US |
dc.subject | Computer simulation | en_US |
dc.subject | Light | en_US |
dc.subject | Materials testing | en_US |
dc.subject | Metal nanoparticles | en_US |
dc.subject | Molecular | en_US |
dc.subject | Radiation | en_US |
dc.subject | Surface plasmon resonance | en_US |
dc.title | Raman enhancement on a broadband meta-surface | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Raman Enhancement on a Broadband Meta-Surface.pdf
- Size:
- 4.75 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version