Stereoscopic urban visualization based on graphics processor unit

Date

2008-09

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Optical Engineering

Print ISSN

0091-3286

Electronic ISSN

Publisher

S P I E - International Society for Optical Engineering

Volume

47

Issue

9

Pages

1 - 10

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
22
downloads

Series

Abstract

We propose a framework for the stereoscopic visualization of urban environments. The framework uses occlusion and view-frustum culling (VFC) and utilizes graphics hardware to speed up the rendering process. The occlusion culling is based on a slice-wise storage scheme that represents buildings using axis-aligned slices. This provides a fast and a low-cost way to access the visible parts of the buildings. View-frustum culling for stereoscopic visualization is carried out once for both eyes by applying a transformation to the culling location. Rendering using graphics hardware is based on the slice-wise building representation. The representation facilitates fast access to data that are pushed into the graphics procesing unit (GPU) buffers. We present algorithms to access this GPU data. The stereoscopic visualization uses off-axis projection, which we found more suitable for the case of urban visualization. The framework is tested on large urban models containing 7.8 million and 23 million polygons. Performance experiments show that real-time stereoscopic visualization can be achieved for large models. © 2008 Society of Photo-Optical Instrumentation Engineers.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)