Computational modeling of quantum-confined impact ionization in Si nanocrystals embedded in SiO2
dc.citation.epage | 121 | en_US |
dc.citation.issueNumber | 1-2 | en_US |
dc.citation.spage | 118 | en_US |
dc.citation.volumeNumber | 38 | en_US |
dc.contributor.author | Sevik, C. | en_US |
dc.contributor.author | Bulutay, C. | en_US |
dc.date.accessioned | 2016-02-08T10:15:02Z | |
dc.date.available | 2016-02-08T10:15:02Z | |
dc.date.issued | 2007 | en_US |
dc.department | Department of Physics | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | Injected carriers from the contacts to delocalized bulk states of the oxide matrix via Fowler-Nordheim tunneling can give rise to quantum-confined impact ionization (QCII) of the nanocrystal (NC) valence electrons. This process is responsible for the creation of confined excitons in NCs, which is a key luminescence mechanism. For a realistic modeling of QCII in Si NCs, a number of tools are combined: ensemble Monte Carlo (EMC) charge transport, ab initio modeling for oxide matrix, pseudopotential NC electronic states together with the closed-form analytical expression for the Coulomb matrix element of the QCII. To characterize the transport properties of the embedding amorphous SiO2, ab initio band structure and density of states of the α-quartz phase of SiO2 are employed. The confined states of the Si NC are obtained by solving the atomistic pseudopotential Hamiltonian. With these ingredients, realistic modeling of the QCII process involving a SiO2 bulk state hot carrier and the NC valence electrons is provided. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:15:02Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2007 | en |
dc.identifier.doi | 10.1016/j.physe.2006.12.044 | en_US |
dc.identifier.issn | 1386-9477 | |
dc.identifier.uri | http://hdl.handle.net/11693/23510 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.physe.2006.12.044 | en_US |
dc.source.title | Physica E: Low-Dimensional Systems and Nanostructures | en_US |
dc.subject | Ensamble Monte Carlo | en_US |
dc.subject | High field transport | en_US |
dc.subject | Quantum confined impact ionization | en_US |
dc.subject | Si nanocrystals | en_US |
dc.subject | Amorphous materials | en_US |
dc.subject | Charge transfer | en_US |
dc.subject | Hamiltonians | en_US |
dc.subject | Ionization | en_US |
dc.subject | Luminescence | en_US |
dc.subject | Monte Carlo methods | en_US |
dc.subject | Quantum confinement | en_US |
dc.subject | Silica | en_US |
dc.subject | High field transport | en_US |
dc.subject | Quantum confined impact ionization | en_US |
dc.subject | Realistic modeling | en_US |
dc.subject | Valence electrons | en_US |
dc.subject | Nanocrystals | en_US |
dc.title | Computational modeling of quantum-confined impact ionization in Si nanocrystals embedded in SiO2 | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Computational modeling of quantum-confined impact ionization in Si nanocrystals embedded in SiO2.pdf
- Size:
- 455.02 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version