A hybrid nanofiber matrix to control the survival and maturation of brain neurons

buir.contributor.authorGüler, Mustafa O.
dc.citation.epage555en_US
dc.citation.issueNumber2en_US
dc.citation.spage545en_US
dc.citation.volumeNumber33en_US
dc.contributor.authorSur, S.en_US
dc.contributor.authorPashuck, E. T.en_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.contributor.authorIto, M.en_US
dc.contributor.authorStupp, S. I.en_US
dc.contributor.authorLauney, T.en_US
dc.date.accessioned2016-02-08T09:49:12Z
dc.date.available2016-02-08T09:49:12Z
dc.date.issued2012en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractScaffold design plays a crucial role in developing graft-based regenerative strategies, especially when intended to be used in a highly ordered nerve tissue. Here we describe a hybrid matrix approach, which combines the structural properties of collagen (type I) with the epitope-presenting ability of peptide amphiphile (PA) nanofibers. Self-assembly of PA and collagen molecules results in a nanofibrous scaffold with homogeneous fiber diameter of 20-30 nm, where the number of laminin epitopes IKVAV and YIGSR can be varied by changing the PA concentrations over a broad range of 0.125-2 mg/ml. Granule cells (GC) and Purkinje cells (PC), two major neuronal subtypes of cerebellar cortex, demonstrate distinct response to this change of epitope concentration. On IKVAV hybrid constructs, GC density increases three-fold compared with the control collagen substrate at a PA concentration of ≥0.25 mg/ml, while PC density reaches a maximum (five-fold vs. control) at 0.25 mg/ml of PA and rapidly decreases at higher PA concentrations. In addition, adjustment of the epitope number allowed us to achieve fine control over PC dendrite and axon growth. Due to the ability to modulate neuron survival and maturation by easy manipulation of epitope density, our design offers a versatile test bed to study the extracellular matrix (ECM) contribution in neuron development and the design of optimal neuronal scaffold biomaterials. © 2011 Elsevier Ltd.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:49:12Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1016/j.biomaterials.2011.09.093en_US
dc.identifier.eissn1878-5905
dc.identifier.issn0142-9612
dc.identifier.urihttp://hdl.handle.net/11693/21645
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.biomaterials.2011.09.093en_US
dc.source.titleSelf assemblyen_US
dc.subjectLamininen_US
dc.subjectCollagenen_US
dc.subjectPeptide amphiphileen_US
dc.subjectNerve tissue engineeringen_US
dc.subjectBrainen_US
dc.titleA hybrid nanofiber matrix to control the survival and maturation of brain neuronsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A hybrid nanofiber matrix to control the survival and maturation of brain neurons.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:
Full printable version