Operator representation and class transitions in elementary cellular automata
buir.contributor.author | Jahangirov, Naide | |
buir.contributor.author | Gülseren, Oğuz | |
buir.contributor.author | Jahangirov, Seymur | |
buir.contributor.orcid | Jahangirov, Naide|0000-0002-5521-0836 | |
buir.contributor.orcid | Gülseren, Oğuz|0000-0002-7632-0954 | |
buir.contributor.orcid | Jahangirov, Seymur|0000-0002-0548-4820 | |
dc.citation.epage | 432 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 415 | en_US |
dc.citation.volumeNumber | 31 | en_US |
dc.contributor.author | İbrahimi, M. | |
dc.contributor.author | Güçlü, A. | |
dc.contributor.author | Jahangirov, Naide | |
dc.contributor.author | Yaman, M. | |
dc.contributor.author | Gülseren, Oğuz | |
dc.contributor.author | Jahangirov, Seymur | |
dc.date.accessioned | 2023-02-27T09:55:24Z | |
dc.date.available | 2023-02-27T09:55:24Z | |
dc.date.issued | 2022 | |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | We exploit the mirror and complementary symmetries of elementary cellular automata (ECAs) to rewrite their rules in terms of logical operators. The operator representation based on these fundamental symmetries enables us to construct a periodic table of ECAs that maps all unique rules in clusters of similar asymptotic behavior. We also expand the elementary cellular automaton (ECA) dynamics by introducing a parameter that scales the pace with which operators iterate the system. While tuning this parameter continuously, further emergent behavior in ECAs is unveiled as several rules undergo multiple phase transitions between periodic, chaotic and complex (class 4) behavior. This extension provides an environment for studying class transitions and complex behavior in ECAs. Moreover, the emergence of class 4 structures can potentially enlarge the capacity of many ECA rules for universal computation. | en_US |
dc.description.provenance | Submitted by Samet Emre (samet.emre@bilkent.edu.tr) on 2023-02-27T09:55:24Z No. of bitstreams: 1 Operator _Representation _and _Class _Transitions _in _Elementary _Cellular _Automata.pdf: 717090 bytes, checksum: f9f317705aebe5ede237ba1f5a61a37a (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-27T09:55:24Z (GMT). No. of bitstreams: 1 Operator _Representation _and _Class _Transitions _in _Elementary _Cellular _Automata.pdf: 717090 bytes, checksum: f9f317705aebe5ede237ba1f5a61a37a (MD5) Previous issue date: 2022 | en |
dc.identifier.doi | 10.25088/ComplexSystems.31.4.415 | en_US |
dc.identifier.eissn | 0891-2513 | |
dc.identifier.uri | http://hdl.handle.net/11693/111804 | |
dc.language.iso | English | en_US |
dc.publisher | Complex Systems Publications, | en_US |
dc.relation.isversionof | https://doi.org/10.25088/ComplexSystems.31.4.415 | en_US |
dc.source.title | Complex Systems | en_US |
dc.subject | Elementary cellular automata | en_US |
dc.subject | Classes of cellular automata | en_US |
dc.subject | Deterministic transition | en_US |
dc.subject | Logistic map | en_US |
dc.subject | Cantor set | en_US |
dc.title | Operator representation and class transitions in elementary cellular automata | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Operator _Representation _and _Class _Transitions _in _Elementary _Cellular _Automata.pdf
- Size:
- 700.28 KB
- Format:
- Adobe Portable Document Format
- Description:
- Makale Dosyası
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: