Molecular rheology of nanoconfined oligomer melts

buir.contributor.authorYıldırım, Ahmet Burak
buir.contributor.authorErbaş, Aykut
buir.contributor.authorBiancofiore, Luca
buir.contributor.orcidYıldırım, Ahmet Burak|0000-0001-9650-3283
buir.contributor.orcidErbaş, Aykut|0000-0003-2192-8804
buir.contributor.orcidBiancofiore, Luca|0000-0001-7159-7965
dc.citation.epage299
dc.citation.issueNumber3
dc.citation.spage285
dc.citation.volumeNumber68
dc.contributor.authorYıldırım, Ahmet Burak
dc.contributor.authorErbaş, Aykut
dc.contributor.authorBiancofiore, Luca
dc.date.accessioned2025-02-25T06:49:42Z
dc.date.available2025-02-25T06:49:42Z
dc.date.issued2024-03-21
dc.departmentDepartment of Mechanical Engineering
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.description.abstractWe use nonequilibrium atomistic molecular dynamics simulations of unentangled melts of linear and star oligomer chains ($C_{25} H_{52}$) to study the steady-state viscoelastic response under confinement within nanoscale hematite ($\left(\right. \alpha - F e_{2} O_{3} \left.\right)$) channels. We report (i) the negative (positive) first (second) normal stress difference and (ii) the presence of viscoelastic tension at low $W i$. With the aim of uncovering the molecular mechanism of viscoelasticity, we link these effects to bond alignment such that absorbed chains near the surface can carry the elastic force exerted on the walls, which decays as the chains become more aligned in the flow direction. This alignment is observed to be independent of the film thickness but enhanced as the shear rate increases or the surface attraction weakens.
dc.identifier.doi10.1122/8.0000751
dc.identifier.eissn1520-8516
dc.identifier.issn0148-6055
dc.identifier.urihttps://hdl.handle.net/11693/116794
dc.language.isoEnglish
dc.publisherSociety of Rheology
dc.relation.isversionofhttps://doi.org/10.1122/8.0000751
dc.source.titleJournal of Rheology
dc.titleMolecular rheology of nanoconfined oligomer melts
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molecular_rheology_of_nanoconfined_oligomer_melts.pdf
Size:
36.79 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: