On the elastic properties of INGAN/GAN LED structures

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage13en_US
dc.citation.issueNumber2en_US
dc.citation.spage1en_US
dc.citation.volumeNumber125en_US
dc.contributor.authorBilgili, A. K.en_US
dc.contributor.authorAkpınar, Ö.en_US
dc.contributor.authorÖztürk, M. Ken_US
dc.contributor.authorBaşköse, C.en_US
dc.contributor.authorÖzçelik, S.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2020-02-19T13:31:44Z
dc.date.available2020-02-19T13:31:44Z
dc.date.issued2019-01
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn this study, three InGaN/GaN light-emitting diode (LED) structures with five periods are investigated grown by metal organic chemical vapor deposition (MOCVD) technique. During growth of these three samples, active layer growth temperatures are adjusted as 650, 667 and 700 °C. These structures are grown on sapphire (Al2O3) wafer as InGaN/GaN multiquantum wells (MQWs) between n-GaN and p-AlGaN+GaN contact layers. During growth, pressure and flux ratio of all sources are kept constant for all samples. Only temperature of InGaN active layer is changed. These structures are analyzed with high-resolution X-ray diffraction (HR-XRD) technique. Their surface morphologies are investigated with atomic force microscopy (AFM). Reciprocal space mapping (RSM) is made different from classical HR-XRD analyses. Using this method, mixed peaks belonging to InGaN, AlGaN and GaN layers are seen more clearly and their full width at half maximum (FWHM) values is determined with better accuracy. With FWHM gained from RSM and Williamson–Hall (W–H) method based on universal elastic coefficients of the material, particle size D (nm), uniform stress σ (GPa), strain ε and anisotropic energy density u (kJ m−3) parameters for the samples are calculated. The results are compared with literature. On the other hand, to have an idea about the accuracy of the results AFM images are examined. Parameters calculated showed differences but it is seen that the largest particle size is gained for GaN and the smallest is gained for AlGaN. For all parameters, it is seen that they increase for GaN layer and decrease for AlGaN layer with increasing temperature. For InGaN layer parameters, they showed both increasing and decreasing or decreasing and increasing behavior harmonically with an increase in temperature. Results showed that they are compatible with literature. Results gained from Scherrer and W–H are very near to each other.en_US
dc.identifier.doi10.1007/s00339-019-2402-6en_US
dc.identifier.eissn1432-0630
dc.identifier.issn0947-8396
dc.identifier.urihttp://hdl.handle.net/11693/53439
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s00339-019-2402-6en_US
dc.source.titleApplied Physics A: Materials Science and Processingen_US
dc.titleOn the elastic properties of INGAN/GAN LED structuresen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_the_elastic_properties_of_INGAN_GAN_LED_structures.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: