Mackey group categories and their simple functors

buir.advisorBarker, Laurence J.
dc.contributor.authorYaylıoğlu, Volkan Dağhan
dc.date.accessioned2016-01-08T18:23:31Z
dc.date.available2016-01-08T18:23:31Z
dc.date.issued2012
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references leaves 34.en_US
dc.description.abstractConstructing the Mackey group category M using axioms which are reminiscent of fusion systems, the simple RM-functors (the simple functors from the R-linear extension of M to R-modules, where R is a commutative ring) can be classified via pairs consisting of the objects of the Mackey group category (which are finite groups) and simple modules of specific group algebras. The key ingredient to this classification is a bijection between some RM-functors (not necessarily simple) and some morphisms of EndRM(G). It is also possible to define the Mackey group category by using Brauer pairs, or even pointed groups as objects so that this classification will still be valid.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:23:31Z (GMT). No. of bitstreams: 1 0006422.pdf: 347103 bytes, checksum: f17f115f77221f3da84964efc1a2b39a (MD5)en
dc.description.statementofresponsibilityYaylıoğlu, Volkan Dağhanen_US
dc.format.extentvi, 34 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/15709
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMackey group categoryen_US
dc.subjectPuig categoryen_US
dc.subjectBrauer categoryen_US
dc.subject.lccQA169 .Y39 2012en_US
dc.subject.lcshFunctor theory.en_US
dc.subject.lcshAlgebraic functions.en_US
dc.subject.lcshCategories (Mathematics)en_US
dc.subject.lcshInduction (Mathematics)en_US
dc.titleMackey group categories and their simple functorsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0006422.pdf
Size:
338.97 KB
Format:
Adobe Portable Document Format