Mackey group categories and their simple functors

Date

2012

Editor(s)

Advisor

Barker, Laurence J.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
9
downloads

Series

Abstract

Constructing the Mackey group category M using axioms which are reminiscent of fusion systems, the simple RM-functors (the simple functors from the R-linear extension of M to R-modules, where R is a commutative ring) can be classified via pairs consisting of the objects of the Mackey group category (which are finite groups) and simple modules of specific group algebras. The key ingredient to this classification is a bijection between some RM-functors (not necessarily simple) and some morphisms of EndRM(G). It is also possible to define the Mackey group category by using Brauer pairs, or even pointed groups as objects so that this classification will still be valid.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type