Adaptive thermal camouflage using sub-wavelength phase-change metasurfaces

buir.contributor.authorOmam, Zahra Rahimian
buir.contributor.authorGhobadi, Amir
buir.contributor.authorÖzbay, Ekmel
buir.contributor.authorKhalichi, Bahram
buir.contributor.orcidGhobadi, Amir|0000-0002-8146-0361
buir.contributor.orcidKhalichi, Bahram|0000-0002-9465-1044
dc.citation.epage8en_US
dc.citation.issueNumber2en_US
dc.citation.spage1en_US
dc.citation.volumeNumber56en_US
dc.contributor.authorOmam, Zahra Rahimian
dc.contributor.authorGhobadi, Amir
dc.contributor.authorÖzbay, Ekmel
dc.contributor.authorKhalichi, Bahram
dc.date.accessioned2023-02-24T14:11:50Z
dc.date.available2023-02-24T14:11:50Z
dc.date.issued2022-12-09
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractSub-wavelength metasurface designs can be used to artificially engineer the spectral thermal signature of an object. The real-time control of this emission can provide the opportunity to switch between radiative cooling (RC) and thermal camouflage functionalities. This performance could be achieved by using phase-change materials (PCMs). This paper presents a sub-wavelength dynamic metasurface design with the adaptive property. The proposed metasurface is made of vanadium dioxide (VO2) nanogratings on a silver (Ag) substrate. The design geometries are optimized in a way that both narrowband and broadband mid-infrared (MIR) emitters can be realized. At low temperatures, insulating VO2 nanogratings trigger the excitation of Fabry–Perot mode inside the grating and surface plasmon polaritons at the metal–dielectric interface with an emission peak located in the MIR region to maximize the RC performance of the design. As temperature rises, the PCM transforms into a metallic phase material and supports excitation of Wood's anomaly and localized surface plasmon resonance modes. Accordingly, the thermal signature is adaptively suppressed.en_US
dc.description.provenanceSubmitted by Ayça Nur Sezen (ayca.sezen@bilkent.edu.tr) on 2023-02-24T14:11:50Z No. of bitstreams: 1 Adaptive_thermal_camouflage_using_sub-wavelength_phase-change_metasurfaces.pdf: 1622538 bytes, checksum: e72ed7298861b39770bf48da06a5c461 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-24T14:11:50Z (GMT). No. of bitstreams: 1 Adaptive_thermal_camouflage_using_sub-wavelength_phase-change_metasurfaces.pdf: 1622538 bytes, checksum: e72ed7298861b39770bf48da06a5c461 (MD5) Previous issue date: 2022-12-09en
dc.identifier.doi10.1088/1361-6463/aca41den_US
dc.identifier.eissn1361-6463
dc.identifier.issn0022-3727
dc.identifier.urihttp://hdl.handle.net/11693/111700
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttps://doi.org/10.1088/1361-6463/aca41den_US
dc.source.titleJournal of Physics D: Applied Physicsen_US
dc.subjectThermal camouflageen_US
dc.subjectMetasurfaceen_US
dc.subjectPhase-change materialsen_US
dc.subjectSurface plasmon polaritonsen_US
dc.subjectWood’s anomaly resonanceen_US
dc.titleAdaptive thermal camouflage using sub-wavelength phase-change metasurfacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adaptive_thermal_camouflage_using_sub-wavelength_phase-change_metasurfaces.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: