Ondansetron/Cyclodextrin inclusion complex nanofibrous webs for potential orally fast-disintegrating antiemetic drug delivery
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Ondansetron (ODS) is an effective antiemetic drug which suffers from limited solubility and bioavailability during oral administration due to first-pass metabolism. However, these limitations can be mitigated through inclusion complexation with cyclodextrins (CDs). In this study, we have reported the electrospinning of polymer-free, free-standing ODS/CD nanofibrous webs (NW), a promising approach for developing a fast-disintegrating delivery system of an antiemetic drug molecule. Highly water soluble hydroxypropyl-beta-cyclodextrins (HPβCD) were used as both complexation agent and electrospinning matrix. The computational study revealed that the 1/2 (drug/CD) stoichiometry was more favorable compared to 1/1. The ODS/HPβCD NW was obtained with higher loading efficiency (∼96 %) compared to the control sample of ODS/polyvinyl alcohol (PVA) NW (∼80 %). The amorphous distribution of ODS raised by complexation and the highly water-soluble nature of HPβCD resulted into faster and better release profile and quite faster disintegration property (∼2 s) in artificial saliva than polymeric ODS/PVA NW. Here, ODS/HPβCD NW was generated in the absence of a toxic solvent or chemical to enable the drug loading in an amorphous state. From all reasons above, ODS/HPβCD NW might be a promising alternative to the polymeric based systems for the purpose of fast-disintegrating oral drug delivery.