Online additive updates with FFT-IFFT operator on the GRU neural networks

dc.contributor.authorMirza, Ali H.en_US
dc.coverage.spatialIzmir, Turkeyen_US
dc.date.accessioned2019-02-21T16:04:59Z
dc.date.available2019-02-21T16:04:59Z
dc.date.issued2018en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 2-5 May 2018en_US
dc.description.abstractIn this paper, we derived the online additive updates of gated recurrent unit (GRU) network by using fast fourier transform-inverse fast fourier transform (FFT-IFFT) operator. In the gating process of the GRU networks, we work in the frequency domain and execute all the linear operations. For the non-linear functions in the gating process, we first shift back to the time domain and then apply non-linear GRU gating functions. Furthermore, in order to reduce the computational complexity and speed up the training process, we apply weight matrix factorization (WMF) on the FFT-IFFT variant GRU network. We then compute the online additive updates of the FFT-WMF based GRU networks using stochastic gradient descent (SGD) algorithm. We also used long short-term memory (LSTM) networks in place of the GRU networks. Through an extensive set of experiments, we illustrate that our proposed algorithm achieves a significant increase in performance with a decrease in computational complexity.
dc.description.provenanceMade available in DSpace on 2019-02-21T16:04:59Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1109/SIU.2018.8404456
dc.identifier.isbn9781538615010
dc.identifier.urihttp://hdl.handle.net/11693/50223
dc.language.isoEnglish
dc.publisherIEEE
dc.relation.isversionofhttps://doi.org/10.1109/SIU.2018.8404456
dc.source.title2018 26th Signal Processing and Communications Applications Conference (SIU)en_US
dc.subjectFFTen_US
dc.subjectGRUen_US
dc.subjectOnline learningen_US
dc.subjectOnline updatesen_US
dc.subjectSGDen_US
dc.titleOnline additive updates with FFT-IFFT operator on the GRU neural networksen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Online_additive_updates_with_FFT-IFFT_operator_on_the_GRU_neural_networks.pdf
Size:
214.48 KB
Format:
Adobe Portable Document Format
Description:
Full printable version