Online additive updates with FFT-IFFT operator on the GRU neural networks

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

2018 26th Signal Processing and Communications Applications Conference (SIU)

Print ISSN

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
42
downloads

Series

Abstract

In this paper, we derived the online additive updates of gated recurrent unit (GRU) network by using fast fourier transform-inverse fast fourier transform (FFT-IFFT) operator. In the gating process of the GRU networks, we work in the frequency domain and execute all the linear operations. For the non-linear functions in the gating process, we first shift back to the time domain and then apply non-linear GRU gating functions. Furthermore, in order to reduce the computational complexity and speed up the training process, we apply weight matrix factorization (WMF) on the FFT-IFFT variant GRU network. We then compute the online additive updates of the FFT-WMF based GRU networks using stochastic gradient descent (SGD) algorithm. We also used long short-term memory (LSTM) networks in place of the GRU networks. Through an extensive set of experiments, we illustrate that our proposed algorithm achieves a significant increase in performance with a decrease in computational complexity.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)