Bicriteria robotic operation allocation in a flexible manufacturing cell
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Consider a manufacturing cell of two identical CNC machines and a material handling robot. Identical parts requesting the completion of a number of operations are to be produced in a cyclic scheduling environment through a flow shop type setting. The existing studies in the literature overlook the flexibility of the CNC machines by assuming that both the allocation of the operations to the machines as well as their respective processing times are fixed. Consequently, the provided results may be either suboptimal or valid under unnecessarily limiting assumptions for a flexible manufacturing cell. The allocations of the operations to the two machines and the processing time of an operation on a machine can be changed by altering the machining conditions of that machine such as the speed and the feed rate in a CNC turning machine. Such flexibilities constitute the point of origin of the current study. The allocation of the operations to the machines and the machining conditions of the machines affect the processing times which, in turn, affect the cycle time. On the other hand, the machining conditions also affect the manufacturing cost. This study is the first to consider a bicriteria model which determines the allocation of the operations to the machines, the processing times of the operations on the machines, and the robot move sequence that jointly minimize the cycle time and the total manufacturing cost. We provide algorithms for the two 1-unit cycles and test their efficiency in terms of the solution quality and the computation time by a wide range of experiments on varying design parameters.