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Consider a manufacturing cell of two identical CNC machines and a material handling robot. Identical
parts requesting the completion of a number of operations are to be produced in a cyclic scheduling en-
vironment through a flow shop type setting. The existing studies in the literature overlook the flexibility
of the CNC machines by assuming that both the allocation of the operations to the machines as well as
their respective processing times are fixed. Consequently, the provided results may be either suboptimal
or valid under unnecessarily limiting assumptions for a flexible manufacturing cell. The allocations of the
operations to the two machines and the processing time of an operation on a machine can be changed
by altering the machining conditions of that machine such as the speed and the feed rate in a CNC
turning machine. Such flexibilities constitute the point of origin of the current study. The allocation of
the operations to the machines and the machining conditions of the machines affect the processing times
which, in turn, affect the cycle time. On the other hand, the machining conditions also affect the manu-
facturing cost. This study is the first to consider a bicriteria model which determines the allocation of the
operations to the machines, the processing times of the operations on the machines, and the robot move
sequence that jointly minimize the cycle time and the total manufacturing cost. We provide algorithms
for the two 1-unit cycles and test their efficiency in terms of the solution quality and the computation
time by a wide range of experiments on varying design parameters.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In order to be successful in today's highly competitive market,
the companies have to adapt to the environment in which they oper-
ate, be more flexible in their operations, and satisfy different market
segments. For these purposes Flexible Manufacturing Cells (FMC) are
installed and used in most of the manufacturing industries. A man-
ufacturing cell consisting of a number of Computer Numerical Con-
trol (CNC) machines and a material handling robot is called a FMC.
These systems must be managed successfully to attain the maximum
throughput rate with minimum cost. The problem considered in this
paper has three aspects: (i) scheduling of robot moves, (ii) deter-
mination of the allocation of the operations, and (iii) determination
of the optimal processing time of each operation, in a 2-machine
cell producing identical parts. In the literature, the most common
objective is the maximization of the throughput which is equiva-
lent to the minimization of the cycle time. Although cost objectives

∗ Corresponding author. Fax: +903122664054.
E-mail address: akturk@bilkent.edu.tr (M. Selim Akturk).

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2009.06.025

are common in scheduling theory and practice and have even higher
priority in “process planning”, as far as the authors know, there
are no studies in robotic cell literature considering cost objectives,
except Gultekin et al. [7]. Additionally, in comparison to single cri-
terion approaches, considering multiple criteria provides useful in-
sights for the decision maker. For example, a solution that minimizes
the cycle time can be very poor costwise. In this paper, we will con-
sider a bicriteria problem where the objectives are the minimization
of the cycle time and the minimization of the total manufacturing
cost.

In some industries such as automotive and electronics, due to the
material handling and robot work envelope restrictions, a required
set of operations must be allocated to a series of stations and each
part must go through all the stations in the same sequence. This pro-
duction environment, generally known as the flow shop type robotic
cell, is the most widely studied setting in robotic cell scheduling
literature starting with the seminal paper of Sethi et al. [12] and fol-
lowed by others as summarized in a recent review of Dawande et al.
[6]. In this study, we limit ourselves to flexible manufacturing cells
in which CNC machines are arranged in a flow shop type production
environment. CNC machines are highly flexible, a property that can
be readily utilized in improving the productivity of the underlying
robotic cells. Furthermore, the machining parameters such as the
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speed and the feed rate are controllable variables for such machines.
The processing times of the operations on these machines can be
changed by altering these parameters. Despite these facts, the cur-
rent literature assumes the processing time of a part on a machine to
be a fixed predetermined parameter and hence limits the number of
alternatives. In this study, we assume each of the identical parts to
have a set of operations to be performed on the two CNC machines.
Each operation requires a specific type of tool and the machines are
capable of performing an operation as long as the required cutting
tool is loaded on their tool magazines. Consistent with the existing
literature, it is assumed that all parts must be processed by both of
the machines in the sequence respecting the layout. In other words,
we shall decide on the assignment of nonempty sets of operations
to each of the machines. Following this decision, the proper cutting
tools will be loaded on the machines. In addition to utilizing the
flexibility of assigning the operations to the machines, the process-
ing times of the operations on the machines will also be considered
as decision variables. Allowing allocation flexibility and controllable
processing times in turn affect both the cycle time and the total
manufacturing cost. The problem is not only to find the robot move
sequence but also to determine the allocation of the operations to
the machines and the processing times of the operations on the ma-
chines that jointly minimize the total manufacturing cost and the
cycle time.

There is an extensive literature on robotic cell scheduling prob-
lems with widespread reviews such as Crama et al. [5] and Dawande
et al. [6]. A common trend in the existing studies is to consider the
minimization of the cycle time as the single objective. Sethi et al.
[12] develop the necessary framework for the robotic cell scheduling
problems and prove that 1-unit cycles minimize the cycle time for
2-machine cells. An n-unit cycle is defined to be a robot move cycle
in which all machines are loaded and unloaded exactly n times and
the initial and the final states of the cell are the same. Crama and van
de Klundert [4] describe a polynomial time dynamic programming
algorithm for minimizing the cycle time over all 1-unit cycles in an
m-machine cell producing identical parts. Akturk et al. [1] consider
a flexible manufacturing cell producing identical parts where the al-
locations of the operations are decision variables and prove that an
n-unit cycle, where n�2, minimizes the cycle time. They also pro-
vide the regions of optimality for each of the potentially optimal
robot move cycles.

Sincewe have two criteria, the optimal solutionwill not be unique
but instead a set of nondominated solutions will be identified. The
reader is referred to Hoogeveen [8] for a review on multicriteria
scheduling models. A recent survey of the literature on control-
lable processing times can be found in Shabtay and Steiner [13].
In the current study, we assume a nonlinear, strictly convex, and
differentiable cost function. Although assuming the cost function to
be linear simplifies the problem, it is not realistic because it does
not reflect the law of diminishing returns. Kayan and Akturk [10]
consider a single machine bicriteria scheduling model with control-
lable processing times. They select total manufacturing cost and any
regular scheduling measure—one which cannot be improved by in-
creasing the processing times—such as makespan or cycle time, as
the two objective criteria and derive lower and upper bounds on
processing times. Gultekin et al. [7] extend this idea to the robotic
cell scheduling problem, where the allocations of the operations to
the machines are taken as parameters.

The organization of this paper is as follows: In the next sec-
tion we will present the mathematical formulation of the problem.
The solution procedures for the 1-unit cycles will be developed in
Sections 3 and 4, respectively. In Section 5, the performance of the
proposed heuristic presented in Section 4 will be evaluated through
a computational study. Section 6 is devoted to the concluding
remarks.

2. Problem formulation

In this study, justified with the complexity of the problem and
consistent with most of the studies in the robotic cell scheduling
literature, we restrict ourselves to 1-unit cycles. The following robot
activity definition borrowed from [4] is sufficient to represent these
move cycles in a flow shop type robotic cell:

Definition 1. Ai is the robot activity defined as robot unloads ma-
chine i, transfers the part from machine i to machine (i + 1), and
loads this machine.

In 2-machine cells there are two 1-unit cycles, namely, S1 cycle
with activity sequence A0A1A2 and S2 cycle with activity sequence
A0A2A1. In the initial state of S1 cycle, the system is empty and the
robot is in front of the input buffer. After the listed activities are
performed, the robot returns to the input buffer. Initially in the S2
cycle, only the second machine is loaded and the robot is in front of
the input buffer. The animated views of these cycles can be found
at the web site http://www.ie.bilkent.edu.tr/∼robot. Let Pi represent
the processing time of a part onmachine i=1, 2; � represent the robot
transportation time between any two consecutive machines; and �
represent the loading/unloading time of the machines by the robot.
The cycle time is defined as the long run average time required to
produce one part. Let TS represent the cycle time of the robot move
cycle S. The cycle times of these cycles are provided by Sethi et al.
[12] as follows:

TS1 = 6�+ 6�+ P1 + P2, (1)

TS2 = 6�+ 8�+max{0, P1 − 2�− 4�, P2 − 2�− 4�}. (2)

It is apparent from Eqs. (1) and (2) that the cycle times are sen-
sitive to the processing times P1 and P2. We assume each of the
identical parts to have a set of operations, O={1, 2, . . . , p}. Processing
time of operation l is denoted by tl. The machines are assumed to be
capable of performing any operation so long as they are equipped
with the required cutting tools. Akturk et al. [1] prove that by con-
sidering the allocation of the operations to the machines as a deci-
sion variable, the efficiency of the cells can be improved in terms of
the cycle time. The tooling of the machines is done depending on
the allocation of the operations. The processing time of a part on a
machine is equal to the summation of the processing times of the
operations performed by that machine. Let xli be the binary vari-
able that indicates whether operation l is allocated to machine i or
not. Then, Pi can be written as

∑p
l=1 xlitl. The processing times of the

operations on the CNC machines are functions of the machining pa-
rameters such as the cutting speed and the feed rate. Different pa-
rameters yield different processing time values. Kayan and Akturk
[10] provide lower and upper bounds for the processing times when
minimizing a convex cost function and any regular scheduling mea-
sure. Note that the cycle time is a regular scheduling measure. The
lower bound of a processing time results from constraints such as
the limited tool life, machine power, and surface roughness. On the
other hand, the upper bound of a processing time is the value which
minimizes the total manufacturing cost. When we analyze the cycle
time equations of S1 and S2 given in (1) and (2), respectively, it is
evident that beyond the cost minimizing processing time value both
objectives get worse. Note that the lower bound corresponds to the
minimum processing time–maximum cost case whereas the upper
bound corresponds to the maximum processing time–minimum cost
case. Let tLl and tUl denote the lower and upper bounds for the pro-
cessing time of operation l and fl(tl) denote the manufacturing cost
incurred by the same operation. Since the machines are assumed to
be identical, the cost of an operation is machine independent and
does not depend on other operation costs. We assume fl(tl) to be a
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strictly convex and differentiable function. It is also monotonically
decreasing for tLl � tl � tUl , l=1, 2, . . . , p. The total manufacturing cost
incurred by all of the operations can be written as

∑p
l=1 fl(tl). This

function is also convex and decreasing for tLl � tl � tUl , ∀l. Obviously,
the total manufacturing cost does not depend on the robot move
cycle but depends only on the processing times of the operations
whereas the cycle time depends on both.

In this study, a feasible solution, say �, selects either S1 or S2 as
the robot move cycle, decides on which machine to perform each
operation, and determines the processing times of all the operations
satisfying their respective bounds. We will consider S1 and S2 cy-
cles individually. Let F1 denote the total manufacturing cost and F2
denote the cycle time. These are two competing objectives. Hence,
there is not a unique optimal solution of this problem but a set
of nondominated solutions. In the context of bicriteria optimization
theory, solution �1 dominates solution �2 if it is not worse than �2
under any of the performance measures, and is strictly better under
at least one of the performance measures. Nondominated solutions
are classified as Pareto optimal. More formally:

Definition 2. We say that �1 dominates �2 and denote it as �1 � �2
if and only if F1(�1)� F1(�2) and F2(�1)� F2(�2), one of which holds
as a strict inequality. A solution �∗ is called Pareto optimal, if there
is no other � such that � � �∗. If �∗ is Pareto optimal, the point
z∗ = (F1(�

∗), F2(�
∗)) is called efficient or nondominated. The set of all

efficient points is the efficient frontier.

There are different ways to deal with bicriteria problems [8].
In this study, we will use the epsilon-constraint method denoted by
�(f |g). Here f and g represent the two performance measures. In
this approach, nondominated points are found by solving a series
of problems of the form minimize f given an upper bound on g. By
this method a finite number of nondominated points is determined.
In other words, �(F1|F2) is solved for a number of specific F2 values
which are used to estimate the entire efficient frontier. Estimating
the entire efficient frontier means that the cycle time values for
which we solve the epsilon-constraint problem are uniformly spread
over the range of all feasible cycle time values. In the following
sections, we solve �(F1|T), where T is an upper bound on the cycle
time, by considering each one of the cycles individually.

3. Solution procedure for the S1 cycle

In this section wewill develop a solution procedure for the �(F1|T)
for the S1 cycle. It is obvious from Eq. (1) that the cycle time of S1
does not depend on the allocation of the operations to the machines.
Hence, we get 6�+6�+∑p

l=1 tl � T as the cycle time bound constraint.

Letting T̂ = T − 6�− 6� we have the following formulation for the S1
cycle:

�(F1|T̂)S1 : min
p∑

l=1
fl(tl) (3)

s.t.
p∑

l=1
tl � T̂, (4)

tl � tLl , ∀l. (5)

This formulation minimizes the cost for a given bound on the
cycle time. Notice that we eliminated the upper bounds in the for-
mulation above. This is because, these upper bounds are not phys-
ical bounds but as mentioned earlier they are calculated from the
problem characteristics. The upper bound of a processing time is
selected as the processing time value that minimizes its cost func-
tion. Let us use �fl(tl) instead of �fl(tl)/�tl for notational simplicity.

More formally, the upper bounds are calculated using the equation,
�fl(tl)|tl=tUl = 0. Since the cost function is convex, beyond this min-

imizer it is an increasing function that satisfies �fl(tl)|tl=t̂l >0 for

t̂l > tUl . That is, the cost function is increasing beyond t̂l > tUl . Hence,
t∗l � tUl always holds for optimal t∗l and thus can be eliminated from
the above formulation.

This formulation is of the form of a nonlinear knapsack prob-
lem with separable, convex continuous objective function and con-
straints for which different solution approaches are reviewed in [2].
In the sequel, we will develop a problem specific solution procedure
for the formulation above. This formulation is also equivalent to a
single machine makespan minimization problem with p jobs and
controllable processing times. Since �(F1|T̂)S1 minimizes a strictly
convex function over a convex closed set, a local minimum of F1 is a
global minimum and there exists exactly one global minimum (see
[3, Proposition 2.1.1]). Let t∗ = (t∗1, t

∗
2, . . . , t

∗
p) be the optimal solution

of �(F1|T̂)S1 throughout this section. Let TLS1 and TUS1 be the lower and
upper bounds of the cycle time of the S1 cycle, respectively. In other
words

TLS1 = 6�+ 6�+
p∑

l=1
tLl and TUS1 = 6�+ 6�+

p∑
l=1

tUl . (6)

Also let T̂L = TLS1 − 6�− 6� and T̂U = TUS1 − 6�− 6�. Note that �(F1|T̂)S1
is infeasible if the cycle time bound in constraint (4) satisfies T̂ < T̂L

and all solutions are dominated if T̂ > T̂U . As a result we have the fol-
lowing lemma which will play an essential role in the development
of the solution procedure:

Lemma 1. In the optimal solution of �(F1|T̂)S1 for T̂L � T̂ � T̂U , con-
straint (4) is satisfied as equality.

Proof. Let F∗1 =
∑p

l=1 fl(t
∗
l ) be the optimal objective function value

of �(F1|T̂)S1 with optimal processing time vector t∗. Assume to the
contrary that

∑p
l=1 t

∗
l < T̂ and consider another solution with, t̂∗l = t∗l ,

∀l� l̂ for an arbitrary index l̂ such that t∗
l̂
< tU

l̂
. Let t̂∗

l̂
= t∗

l̂
+ � for

some �, 0<�� min{tU
l̂
− t∗

l̂
, T̂ − (

∑p
l=1 t

∗
l )}. This new solution has

identical processing times for all operations except l̂ and t̂∗
l̂
> t∗

l̂
. Since

the cost function is decreasing with respect to processing times, the
objective function of the new solution, F̂∗1, satisfies F̂

∗
1 <F∗1. However,

this contradicts with t∗ being the optimal solution of �(F1|T̂)S1 . �

As a consequence of the above lemma, we know that the sum
of the optimal processing times is equal to the cycle time bound.
Consider the partition induced by t∗, i.e., J = {l : t∗l > tLl } and J̄ =
{h : t∗h = tLh}. We know that if T̂ > T̂L, then J � ∅. The following result
determines the properties of the operations of these two sets.

Lemma 2. In the optimal solution of �(F1|T̂)S1 , where T̂ > T̂L the fol-
lowing conditions hold:

(i) �fl(tl)|tl=t∗l = �fk(tk)|tk=t∗k , ∀l, k ∈ J,

(ii) �fl(tl)|tl=t∗l ��fh(th)|th=t∗h , ∀h ∈ J̄ and ∀l ∈ J.

Proof. Since we assume T̂ > T̂L, there exists at least one l such that
t∗l > tLl . Therefore, the vector t∗ = (t∗1, t

∗
2, . . . , t

∗
p) is a regular point. In

other words, the gradients of the active inequality constraints and
the gradients of the equality constraints are linearly independent at
that point. Such a point must satisfy the Karush–Kuhn–Tucker (KKT)
conditions. From Lemma 1, constraint (4) is satisfied as equality. As
a consequence, the Lagrangian function for point t∗ can be written as
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follows:

L(t∗,�∗,�∗)=
p∑

l=1
fl(t
∗
l )+ �∗

⎛
⎝ p∑

l=1
t∗l − T̂

⎞
⎠+ p∑

l=1
�∗l (t

L
l − t∗l ).

Here, �∗l �0 and �∗ is unrestricted in sign. If we set ∇t(L(t∗,�∗,�∗))=
0, we get �fl(tl)|tl=t∗l + �∗ − �∗l = 0, ∀l. If l ∈ J, then �∗l = 0. Thus,

�fl(tl)|tl=t∗l = −�∗, ∀l ∈ J, which proves (i). On the other hand, if h ∈
J̄, then �fh(th)|th=t∗h = −�∗ + �∗h. Since �∗h �0, �fh(th)|th=t∗h � − �∗ =
�fl(tl)|tl=t∗l , ∀h ∈ J̄ and ∀l ∈ J, which proves (ii). �

Up to now, we know that the operations are partitioned into two
sets with respect to their processing time values in the optimal so-
lution to �(F1|T̂)S1 . Additionally, the lemma above identifies some
properties of the elements of these two sets regarding their pro-
cessing time values. Note that the derivative of the cost function at
a processing time value shows the contribution of a small change
in the processing time to the cost. Let �l represent the contribution
of operation l when its processing time is at its lower bound. More
formally, we can write �l = �fl(tl)|tl=tLl , l = 1, 2, . . . , p. For a particular

operation, say operation l, we can determine a cycle time value such
that beyond this value of the cycle time the processing time of oper-
ation l will be greater than its lower bound. This cycle time value is
called the critical cycle time value for operation l and denoted as Ml.
In order to calculate such a value for operation l, we first calculate
processing time values of all the remaining operations that have the
same contribution with the lower bound of this particular operation.
This can be calculated using �f−1h (�l), h ∈ O, where �f−1 represents
the inverse of the derivative of the cost function f. However, the pro-
cessing times cannot be smaller than their lower bounds. In order
to satisfy this, we use max{tLh,�f−1h (�l)}. Finally, in order to get the
critical value, we sum all these values for all operations:

Ml =
∑
h∈O

max{tLh,�f−1h (�l)}. (7)

The following lemma uses these values to determine the elements
of the J and J̄ sets easily without determining the optimal processing
times to �(F1|T̂)S1 .

Lemma 3. In the optimal solution of �(F1|T̂)S1 , l ∈ J, if and only if T̂ >Ml.

Proof (Proof by contradiction). Let us first prove the necessity: as-
sume that T̂ >Mh but to the contrary h ∈ J̄, for at least one oper-
ation h. Hence, t∗h = tLh. But from condition (ii) of Lemma 2, �h =
�fh(th)|th=tLh ��fl(tl)|tl=t∗l , ∀l ∈ J. Using the convexity and the invert-

ibility of fl we can get a bound on t∗l as t∗l ��f−1l (�h), ∀l ∈ J. Inserting

this bound inside T̂=∑l∈J̄ t
L
l +
∑

l∈J t∗l , we get the following inequality:

T̂ =
∑
l∈J̄

tLl +
∑
l∈J

t∗l �
∑
l∈J̄

tLl +
∑
l∈J

�f−1l (�h).

Finally, since T̂ >Mh, we get the following contradiction:

p∑
l=1

max{tLl ,�f−1l (�h)}� T̂ >
p∑

l=1
max{tLl ,�f−1l (�h)}.

Now let us prove the sufficiency: assume h ∈ J but to the
contrary T̂ �Mh, for at least one operation h. Hence, t∗h > tLh,
which implies �h = �fh(th)|th=tLh <�fh(th)|th=t∗h . From condition (i)

of Lemma 2, �fh(th)|th=t∗h = �fl(tl)|tl=t∗l , ∀h, l ∈ J. Hence, we have

�h = �fh(th)|th=tLh <�fl(tl)|tl=t∗l , ∀l ∈ J. Since fl is convex, it satisfies,

t∗l >�f−1l (�h). Combining this with T̂ =∑l∈J̄ t
L
l +

∑
l∈J t∗l ,we get

T̂ =
∑
l∈J̄

tLl +
∑
l∈J

t∗l >
∑
l∈J̄

tLl +
∑
l∈J

�f−1l (�h).

Using T̂ �Mh, we reach a contradiction

p∑
l=1

max{tLl ,�f−1l (�h)}<T̂ �
p∑

l=1
max{tLl ,�f−1l (�h)}. �

This lemma enables a very powerful preprocessing scheme in the
solution procedure of �(F1|T̂)S1 . Clearly, the breakpoint Ml for each
operation l can be calculated easily from the given cost functions
and processing time lower bounds. A simple comparison of these
breakpoints against T̂ partitions the operation set into J and J̄. The
processing times of the operations that are in set J̄ are set to their
lower bounds. What remains is to determine the optimal processing
times of the remaining operations that are in set J. These can be
determined using the following lemma. Let 	=∑h∈J̄ t

L
h.

Lemma 4. In the optimal solution of the �(F1|T̂)S1 , the processing times
of the operations in set J satisfy the following system of nonlinear equa-
tions:

1. t∗l = �f−1l (�fk(tk)|tk=t∗k ), ∀l, k ∈ J,

2.
∑

l∈J t∗l = T̂ −	.

Proof. As a consequence of Lemma 3, for a given value of T̂, we can
determine which operations are in J and which are in J̄ in the optimal
solution. Additionally, Lemma 1 suggests that the cycle time bound
constraint is satisfied as equality in the optimal solution. As a result,
�(F1|T̂)S1 reduces to the following:

min
∑
l∈J

fl(tl)

s.t.
∑
l∈J

tl = T̂ −	, (8)

tl � tLl , ∀l ∈ J. (9)

Note that any feasible vector t∗ is regular for T̂ > T̂L. Since the
objective function and the constraints are convex, any point satisfy-
ing the KKT conditions is optimal. Hence, we have �fl(tl)|tl=t∗l = −�,
∀l ∈ J and t∗l = �f−1l (−�). Using these, the processing time of any op-
eration l ∈ J can be represented in terms of another operation k ∈ J
as follows:

t∗l = �f−1l (�fk(tk)|tk=t∗k ). (10)

Finally, the processing times can be found using Eqs. (8) and (10)
jointly. �

Note that we can select any one of the processing times as the
basis and we can represent all other processing times in terms of this
basis using Eq. (10). Inserting these into Eq. (8), we have a nonlinear
equation of a single variable. Since the cost function is convex, this
nonlinear equation can be solved using some search methods such
as the bisection algorithm, Newton's method or the golden search
algorithm, within an error bound. This is valid for any convex cost
function. Depending on the structure of the cost function, it may also
be possible to find a closed form solution to Eq. (10). In such a situa-
tion all processing times can be presented explicitly and determined
without any error as illustrated in Example 1. As a consequence of
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Lemmas 3 and 4, we can solve �(F1|T̂)S1 easily. This solution corre-
sponds to one of the nondominated solutions on the efficient fron-
tier. Hence, in order to get the overall picture of the efficient frontier,
we can construct an algorithm that determines a total of r nondom-
inated solutions, uniformly spread over the entire efficient frontier,
where the c th solution has the following cycle time value:

T̂L + (c− 1)
T̂U − T̂L

r − 1
. (11)

The algorithm which is named as EFFFRONT-S1 is used for this pur-
pose. The SIMAM subroutine is called to determine the optimal pro-
cessing times of each of the r solutions. This subroutine will also be
used while determining the efficient frontier of the S2 cycle.

Algorithm. EFFFRONT-S1:

Input: r, tLl , fl(·), l ∈ O.
Output: t∗lc, l ∈ O with corresponding cycle time T̂c and cost Cc
values for c= 1, 2, . . . , r.

1. c← 1.
2. Calculate tUl satisfying �fl(tl)|tl=tUl = 0, l ∈ O.

3. Determine Ml, l ∈ O (use Eq. (7)),

4. T̂c ← T̂L + (c− 1)
T̂U − T̂L

r − 1
(use Eqs. in (6)).

5. SIMAM(O, T̂c). Let t∗l , l ∈ O, be the output.
6. t∗lc = t∗l ,l ∈ O and Cc =

∑
l∈O fl(t∗l ). Output t

∗
lc, T̂c and Cc, l ∈ O.

7. c← c+ 1.
8. If (c� r), go to Step 4. Else, STOP.

Subroutine. SIMAM:

Input: O′ ⊆ O, T.
Output: t∗l , l ∈ O′.
1. Determine Ml for l ∈ O′ (use Eq. (7)),
2. Construct sets J and J̄ according to Lemma 3. Set t∗h = tLh, h ∈ J̄,
3. Calculate 	=∑h∈J̄ t

L
h,

4. Solve T −	=∑l∈J�f
−1
l (�fk̂(tk̂)), as prescribed in Lemma 4

to determine t∗
k̂
for an arbitrary k̂ ∈ J:

5. Determine t∗l = �f−1l (�fk̂(tk̂)|tk̂=t∗k̂ ),l ∈ J, l� k̂,

6. Output t∗l , l ∈ O′.

The following example focuses on the CNC turning operations
which possess strictly convex nonlinear cost functions.

Example 1. Let us consider a 2-machine robotic cell with CNC turn-
ing machines. The manufacturing cost for these operations can be
written as follows: fl(tl)=Cotl+KlUlt

al
l . Here Co is the operating cost

of the CNC machine ($/minute), Kl >0 and al <0 are specific con-
stants for the required cutting tool to perform operation l and Ul >0
is a specific constant for operation l regarding parameters such as
the length and the diameter of the operation. Hence, Cotl is the op-
erating cost of the CNC machine and KlUlt

al
l is the tooling cost. The

optimal processing time of an operation k̂ ∈ J can be determined by
solving the following nonlinear equation:

T̂ −	=
∑
l∈J

t
(ak̂−1)/(al−1)
k̂

(
Kk̂Uk̂ak̂
KlUlal

)1/(al−1)
.

Then t∗l can be determined using t∗
k̂
by solving the following:

t∗l = t∗
k̂
((ak̂−1)/(al−1))

(
Kk̂Uk̂ak̂
KlUlal

)1/(al−1)
, ∀l ∈ J.

If all of the operations use the same tool type, then Kl=Kk=K and
ak=al=a, ∀l, k. As a consequence, the optimal processing times of the
operations that are in set J can be determined using the following:

t∗k =
(T̂ −	)(Uk)

1/(1−a)∑
l∈J U

1/(1−a)
l

, ∀k ∈ J. (12)

In order to further clarify the discussion, consider the following nu-
merical example where the same type of tool is used for all oper-
ations. Assume Co = 0.5, K = 4, and a = −1.49. Assume each of the
identical parts requires five operations and the following parame-
ter values are provided: {l|tLl , tUl ,Ul}= {1|1.2, 4.7, 3.96}, {2|2, 2.8, 1.12},
{3|1.8, 5.6, 5.93}, {4|3.5, 4.2, 3.53}, {5|2.2, 3.4, 1.67}. Also assume �= 1
and �= 2. According to these parameters, TLS1 = 28.7 and TUS1 = 38.7.

Subtracting 6� + 6� = 18 from these two, we get T̂L = 10.7 and
T̂U = 20.7, respectively. Let us determine the optimal processing
times of the operations for TS1 = 32.5 or T̂ = 14.5. Using Eq. (7),
M1=10.7, M2=15.08, M3=11.03, M4=16.27, and M5=14.47. Since
T̂=14.5>M1,M3,M5, according to Lemma 3, J={1, 3, 5} and J̄={2, 4}.
Hence, t∗2= tL2=2, t∗4= tL4=3.5, and 	= tL2+ tL4=5.5. Using Eq. (12), the
optimal processing times of the remaining operations are t∗1=3.122,
t∗3=3.67, and t∗5=2.207. The corresponding total manufacturing cost
is
∑5

l=1(Cotl + KUlt
a
l )= 19.4039.

4. Heuristic procedure for the S2 cycle

In this section we will consider the S2 cycle for which, unlike in
the previous section, we also have to deal with the allocation prob-
lem. The allocation of the operations to the twomachines means par-
titioning set O into two nonempty subsets O1, O2 such that O1∪O2=O
and O1∩O2=∅. Oi denotes the set of operations that are allocated to
machine i, i= 1, 2. The total processing time of the part on machine
i is Pi =

∑
l∈Oi

tl, i = 1, 2. Using the binary variable xli, which indi-
cates whether operation l is allocated to machine i or not, we can
also write Pi as

∑p
l=1 xlitl. Akturk et al. [1] prove that the operation

allocation problem for the S2 cycle, even when the processing times
are fixed and there is only a single criterion, is NP-complete. Hence,
we will develop a heuristic procedure that approximates the effi-
cient frontier and perform a computational study to verify its solu-
tion quality. We will compare the results of the heuristic procedure
by solving the epsilon-constraint problem using commercial nonlin-
ear mixed integer problem solvers GAMS-DICOPT2x-C and GAMS-
BARON 7.2.3. Before proceeding with the heuristic procedure let us
first consider the mathematical formulation of the problem. For the
S2 cycle the cycle time bound can be written as max{6� + 8�, 4� +
4� +∑p

l=1 xl1tl, 4� + 4� +∑p
l=1 xl2tl}� T, which can be replaced by

the following constraints:

4�+ 4�+
p∑

l=1
xlitl � T, i= 1, 2, (13)

6�+ 8�� T. (14)

Since both xli and tl are decision variables, the first constraint is
nonlinear. Let Nl denote a sufficiently large number. By replacing xlitl
with wli, we can properly linearize the above constraints as follows:

4�+ 4�+
p∑

l=1
wli � T, (15)

wli � tl − Nl(1− xli), (16)

wli � tl + Nl(1− xli), (17)

wli �Nlxli, (18)

wli �0. (19)
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Note that Nl must be greater than tl. Hence, we will use Nl = tUl .
As a result, the epsilon-constraint problem for the S2 cycle can be
formulated as follows:

�(F1|T)S2 : min
p∑

l=1
fl(tl)

s.t. (14)–(19)

xl1 + xl2 = 1, ∀l, (20)

tl � tLl , ∀l, (21)

xli ∈ {0, 1}, ∀l, ∀i. (22)

This formulation is a Mixed Integer Nonlinear Programming
Model (MINLP) which allocates the operations to the machines and
determines processing time values for all operations guaranteeing
a given cycle time value while minimizing the total manufactur-
ing cost. Let O∗i , i = 1, 2, denote the set of operations allocated

to machine i in the optimal solution of �(F1|T)S2 . The following
lemma characterizes some properties of the optimal solution. Let
t∗ = (t∗1, . . . , t

∗
p) denote the vector of optimal processing times to

�(F1|T)S2 throughout this section.

Lemma 5. One of the following holds:

1.
∑

l∈O∗1 t
∗
l =

∑
l∈O∗2 t

∗
l or,

2.
∑

l∈O∗1 t
∗
l <

∑
l∈O∗2 t

∗
l and t∗l = tUl , ∀l ∈ O∗1 or,

3.
∑

l∈O∗2 t
∗
l <

∑
l∈O∗1 t

∗
l and t∗l = tUl , ∀l ∈ O∗2.

Proof. Let t∗ correspond to an objective function value F∗1. Assume
that this solution satisfies

∑
l∈O∗1 t

∗
l <

∑
l∈O∗2 t

∗
l and t∗

l̂
< tU

l̂
, for at

least one operation l̂ ∈ O∗1. Then we have another feasible solu-

tion such that t̂∗l = t∗l , ∀l� l̂ and t̂∗
l̂
= t∗

l̂
+ � for some � such that

0<�� min{∑l∈O∗2 t
∗
l −

∑
l∈O∗1 t

∗
l , t

U
l̂
− t∗

l̂
}. Since the cost function is

decreasing, F̂∗1 <F∗1. This contradicts with t∗ being an optimal so-
lution. We conclude that we have either

∑
l∈O∗1 t

∗
l �

∑
l∈O∗2 t

∗
l and

t∗
l̂
< tU

l̂
for at least one operation l̂ ∈ O∗1 or

∑
l∈O∗1 t

∗
l <

∑
l∈O∗2 t

∗
l and

t∗
l̂
= tU

l̂
, ∀l ∈ O∗1. A similar argument will lead to a contradiction in the

case
∑

l∈O∗1 t
∗
l >

∑
l∈O∗2 t

∗
l and t∗

l̆
< tU

l̆
for at least one operation l̆ ∈ O∗2.

In conclusion, either
∑

l∈O∗2 t
∗
l �

∑
l∈O∗1 t

∗
l and t∗

l̆
< tU

l̆
for at least one

operation l̆ ∈ O∗2 or
∑

l∈O∗2 t
∗
l <

∑
l∈O∗1 t

∗
l and t∗l = tUl , ∀l ∈ O∗2. �

This lemma states that in the optimal solution of �(F1|T)S2 the
operations are allocated such that the total processing times on both
machines are as close to each other as possible while respecting the
upper bound limitations on processing times. As a consequence, if
the processing times are not decision variables, but predetermined
parameters, the optimal allocation of operations to the machines can
be determined by solving the following Mixed Integer Programming
Problem (MIP) formulation:

Allocation Problem (AP)min T

s.t. 6�+ 8�� T, (23)

4�+ 4�+
p∑

l=1
xlit̂l � T, i= 1, 2, (24)

xl1 + xl2 = 1, ∀l, (25)

xl1, xl2 ∈ {0, 1}, ∀l. (26)

In this formulation, t̂l is a parameter. We can make use of this for-
mulation in order to determine the upper and lower bounds of the cy-
cle time of the S2 cycle, TUS2 and TLS2 , respectively. Let t

L=(tL1, tL2, . . . , tLp)
and tU = (tU1 , t

U
2 , . . . , t

U
p ) be the vectors of lower and upper bounds of

the processing times of operations, respectively. Let T∗L denote the
optimal objective function value of the AP where t̂l = tLl , ∀l. Then,
TLS2 = T∗L . Furthermore, if the processing times on both of the ma-
chines are equal to each other in the optimal solution, then the point
(F1(tL), F2(tL)), where F2(tL) = T∗L is one of the nondominated solu-
tions of the bicriteria formulation for S2. This is the minimum cycle
time-maximum cost solution. On the other hand, if the processing
times on both machines are not equal to each other, according to
Lemma 5, the point (F1(tL), F2(tL)) is dominated. Hence, we can con-
clude that solving the above AP provides a lower bound for the cy-
cle time. Additionally, if the processing times on both machines are
equal to each other, we get the nondominated solution correspond-
ing to the minimum cycle time value. However, if the processing
times are not equal to each other, in order to get the nondominated
solution, the epsilon-constraint problem is solved by setting the cy-
cle time bound to TLS2 . Similarly the upper bound of the cycle time

can be found by solving the AP when t̂l=tUl , ∀l. The optimal objective
function value of this formulation is the upper bound of the cycle
time, F2(tU). Note that, according to cases (2) and (3) of Lemma 5,
the point (F1(tU), F2(tU)) is a nondominated solution for the bicriteria
problem, which corresponds to the maximum cycle-time minimum
cost pair.

Let x∗li be the optimal solution of the AP where all processing
times are set to their upper bounds, t̂l = tUl , ∀l ∈ O.

Lemma 6. If
∑p

l=1 x
∗
lit

U
l �2� + 4�, i = 1, 2, then the efficient frontier

consists of the single point (F1(tU), F2(tU)), where F1(tU) =
∑p

l=1 fl(t
U
l )

and F2(tU)= 6�+ 8�.

Proof. If
∑p

l=1 x
∗
lit

U
l �2�+ 4�, i= 1, 2, then constraint (23) becomes

binding in the optimal solution and the cycle time is equal to its
minimum possible value of 6� + 8�. Furthermore,

∑p
l=1 fl(t

U
l ) is

the lower bound for the cost. Since both objectives attain their
absolute minimum values at this solution, the point is certainly
nondominated. �

The cycle time of the S2 cycle cannot be less than 6� + 8�. This
is the time required for the robot to perform all the necessary load-
ing/unloading and transportation operations. In this cycle, while the
processing on one machine continues, the robot does not wait in
front of this machine, but loads/unloads the other machine. Hence
the processing time of the operations on this machine can be in-
creased so that the processing of all operations are completed when
the robot arrives to unload this machine. Such a change does not
increase the cycle time but reduces the cost. However, if the up-
per bounds of the processing times of the operations are small such
that the total processing on both machines are completed before the
robot arrives in front of the machines, even if all processing times
are set to their upper bounds, there is a nondominated solution, as
stated in the lemma above.

In order to estimate the efficient frontier, we will determine r
uniformly spread nondominated solutions. The quality of the esti-
mation depends on the magnitude of r. Since the allocation problem
is NP-complete, solving even only one problem to optimality using
a nonlinear mixed integer solver will require a significant compu-
tational effort. To this end, we will present a heuristic algorithm.
This algorithm generates a new nondominated solution using the
solution at hand. Starting from TLS2 , the cycle time value is incre-

mented at each step until we reach TUS2 . Instead of using a fixed incre-
ment amount, a new increment amount is determined at each step
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Table 1
(a) The while loop of the DM; (b) the backtracking iterations.

(a)
Step Ordered set aj − ak

1 {10, 8, 7, 4, 3} 10− 8= 2
2 {7, 4, 3, 2} 7− 4= 3
3 {3, 3, 2} 3− 3= 0
4 {2, 0} 2− 0= 2
5 {2} STOP

(b)
Step Partition
5 ∅ {2}
4 {0} {2}
3 {3} {2, 3}
2 {3, 4} {2, 7}
1 {3, 4, 8} {7, 10}

depending on problem characteristics. As a result, the number of
nondominated solutions to be generated is unknown. The points will
be spread in the range between (F1(tL), F2(tL)) and (F1(tU), F2(tU)).

The problem has two phases: finding the allocation of the op-
erations to the machines and determining the processing time val-
ues of the operations. According to Lemma 5, the former of these
problems is equivalent to the set partitioning problem, for which
we will make use of the Difference Method (DM) developed by
Karmarkar and Karp [9] which outperforms other existing poly-
nomial time approximation algorithms from an average behavior
perspective [11]. Let D={a1, a2, . . . , ap} be a set of numbers to be par-
titioned and D′ =D\{aj, ak}∪ {|aj−ak|}. From a partition (A′,B′) of D′ a
partition (A,B) of D can be constructed easily so that both partitions
have identical differences. Suppose aj >ak and |aj − ak| ∈ A′. Then

A= A′\{|aj − ak|} ∪ {aj}, B= B′ ∪ {ak} (27)

gives the desired partition.

Algorithm. Difference Method (DM):

Input: A set of numbers to be partitioned: D.
Output: A partition (A,B) of set D.

while |D|>1 do
pick the largest two numbers aj, ak ∈ D.
D← D\{aj, ak} ∪ {|aj − ak|}.

end while
Do the backtracking operations as explained in Eq. (27).

Example 2. Let us consider partitioning set D = {7, 4, 8, 10, 3}. The
steps of the algorithm can be traced in Table 1a. The resulting set
with only 2 as the element in Step 5 of the algorithm is found by
differencing operation (2−0=2). Hence, one of the sets will have “2”
and the other will have “0” as an element. In this way the partition
in Step 4 ({0}, {2}) will have identical difference as Step 5 (∅, {2}). In
Step 3, “0” is found by differencing operation (3− 3= 0). Hence, we
will replace “0” by “3” and place the other “3” to the other set so
that the difference between the two sets is still the same. Our new
partition is now ({3}, {2, 3}). In Step 2, “3” is found by differencing
operation (7−4=3). Hence, we will replace “3” by “7” and place a “4”
to the other set. There are two 3's. We may select any one arbitrarily.
This suggests that there are alternative partitions. Our new partition
is now ({3, 4}, {2, 7}). In Step 1, “2” is found by differencing operation
(10−8=2). We will replace “2” by “10” and place “8” to the other set.
Our new partition is now ({3, 4, 8}, {7, 10}). The backtracking steps
can be seen in Table 1b.

As already mentioned, a different increment value is used at each
step of the algorithm in order to generate a new nondominated so-
lution. More specifically, let Tc be the cycle time value of the current

nondominated solution. A new solution is determined with a cycle
time value of Tc + inc, where inc is the amount of increment cal-
culated for that step. We determine two candidates and select the
minimum of these as the increment value. One of these candidates is
calculated considering the DM algorithm. Recall that this algorithm
works with a set of fixed numbers. However, in our case the pro-
cessing times which are to be partitioned are decision variables. In
such a case, we have to determine the sensitivity of the algorithm.
That is, for each processing time tl, let �l be calculated in such a way
that adjusting the processing time as tl+� does not change the allo-
cation resulting from the DM algorithm for 0<���l, but it may for
�>�l. These breakpoints are determined considering the ordering
of the numbers at each step of the algorithm. The following example
illustrates a procedure for calculating these breakpoints.

Example 3. Let us consider the same example above with a1 = 10,
a2 = 8, a3 = 7, a4 = 4 and a5 = 3. In Step 1 we have the following de-
scending order of numbers: (10–8–7–4–3). Increasing a1 = 10 does
not yield a change in the ordering of the operations. However, in-
creasing a2 more than a1 − a2 = 10 − 8 = 2 yields a new order and
possibly a new partition. Thus, �21 = 2, where �lj is the bound for al
at step j. Similarly, if we increase a3=7 by more than 8−7=1 unit,
a4 =4 by more than 7−4=3 units, or a5 =3 by more than 4−3=1
units we may end up with a different partition. Hence, at this step
we have �11 =∞, �21 = 2,�31 = 1, �41 = 3 and �51 = 1. In Step 2 of
the DM algorithm, a1 and a2 are removed from the set but a new
element (a1 − a2) is included. The ordering at this step is (7–4–3–2)
resulting in �32 = ∞, �42 = 3, �52 = 1. Note that the last element,
namely 2, is found as a1−a2=10−8=2. Increasing this new element
by more than 3− 2= 1 units may lead to a new partition. Since this
element was not in the original set we can only change its value by
changing the values of the elements used to calculate it. Increasing
this element by 1 unit can only be done by increasing a1 = 10 by 1
unit. Hence, 1 is a bound for a1 ⇒ �12 = 1. On the other hand, de-
creasing this new element by 2 or equivalently increasing a2 = 8 by
2 leads to a negative number. Hence, �22=2. Proceeding in a similar
manner the following bounds can be determined at each step:

Step Bounds

1 �11 =∞ �21 = 2 �31 = 1 �41 = 3 �51 = 1
2 �12 = 1 �22 = 2 �32 =∞ �42 = 3 �52 = 1
3 �13 = 1 �23 = 2 �33 = 0 �43 = 0 �53 = 0
4 �14 =∞ �24 = 2 �34 = 2 �44 = 2 �54 = 2

In the example above we illustrated a procedure for calculating
a bound for each element at each step of the DM algorithm. Using
these bounds, we can calculate an overall bound for each element in
the original set. Given an allocation that has resulted from the DM
algorithm, if we increase the value of one of the elements within its
respective bound, then the DM algorithm will yield the same allo-
cation as before. The bound for element l is �l =minj,�lj �0{�lj}. Note
that, in some steps, the bounds may be equal to 0. This happens if
there are alternative partitions with identical differences. These are
not considered while calculating the overall bounds for the num-
bers. Furthermore, the processing times to be partitioned have up-
per bounds. Let aUl be the upper bound of al. Additionally we must
have 0<�l � aUl −al. Finally, the candidate for the increment value is
minl{�l}. This candidate for the increment value determines whether
we need to run the DM algorithm once more or not in order to gen-
erate the new solution.

The second candidate for the increment comes from Lemma 3.
This lemma determines whether the processing time of an operation
is equal to its lower bound or not by making use of theMl values. It is
important to note that the calculation of theMl values for the S2 cycle
differs from the S1 cycle since the cycle time of S1 does not depend on
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the allocation of the operations to the machines. Therefore,Ml values
for the S2 cycle should be calculated for a given allocation as follows:
Ml=

∑
h∈Oi

max[tLh,�f
−1
h (�fl(tl)|tl=tLl )], ∀l ∈ Oi, i=1, 2. From constraint

(15) of �(F1|T)S2 the sum of the processing times allocated to the same
machine must be less than or equal to Tc−4�−4�. IfMl >Tc−4�−4�
for an arbitrary operation l, then t∗l = tLl . Assume that the cycle time
is incremented so that Tnew = Tc + �. If ��Ml − Tc − 4� − 4�, then
t∗l = tLl . Otherwise, t∗l > tLl . As a consequence, the second candidate is
calculated as 
T = Tc − 4� − 4� −maxl∈J̄{Ml}. Finally, the increment
value for the cycle time to determine a new nondominated solution
is determined as min{
T ,minl{�l}}. We have observed that in some
cases this increment value becomes very small especially when the
number of operations is high. As a result, a set of unnecessarily
large number of solutions is determined by the heuristic, resulting in
relatively large CPU times. In order to avoid this, the increment value
is bounded below by �= E ∗ 10ln p/10. By this bound, the number of
points generated by the algorithm and the CPU time requirements
are balanced for problems with differing number of operations. The
bound can be adjusted by altering the constant E.

Algorithm. A Heuristic Procedure to Construct the Efficient Frontier
(EFFRONT-S2)

Input: �, tLl , fl(·), l ∈ O.
Output: t∗lc, l ∈ O with corresponding cycle time Tc and cost Cc
values and allocation of operations to machines
(O1c, O2c), for each nondominated solution c= 1, 2, . . . , r, and the

total number of nondominated solutions r.
1. Set solution counter c= 1.
2. Calculate tUl satisfying �fl(tl)|tl=tUl = 0, l ∈ O.

3. DM({tU1 , tU2 , . . . , tUp }). Let (O1,O2) be the output.
3.1 If

∑
l∈Oi

tUl �2�+ 4�, i= 1, 2, then TU = 6�+ 8� and
CL =∑l∈O fl(tUl ). Output t

U
l , T

U , CL,
(O1,O2), c. STOP.
3.2 Else, TU =maxi{

∑
l∈Oi

tUl + 4�+ 4�}, CL =∑p
l=1fl(t

U
l ).

4. DM({tL1, tL2, . . . , tLp}). Let (O1,O2) be the output. Set Oic = Oi,
i= 1, 2 and tlc = tLl ,∀l ∈ O.
4.1. If Pic =

∑
l∈Oic

tlc <2�+ 4�, i= 1, 2 then, go to Step 5.
4.2. Else,

4.2.1. Calculate Ml for l ∈ O1 and l ∈ O2 independently using
Eq. (7).

4.2.2. Calculate-t ((O1c,O2c), tlc). Let tl be the output.
4.2.3. Set tlc = tl, ∀l ∈ O. Calculate Tc =maxi{Pic + 4�+ 4�},

Cc =
∑

l∈O fl(tlc). Output tlc, Tc,
Cc, (O1c,O2c). Let c← c+ 1.

5. Calculate Ml, for l ∈ O1 and l ∈ O2 independently using Eq. (7).
6. If Pic <2�+ 4�, i= 1, 2, then set 
T =mini{2�+ 4�− Pic}, else

T =mini{Pic −maxl∈J̄{Ml}}, i= 1, 2.
Determine breakpoints �l, l ∈ O as explained in Example 3.

6.1. If 
T <minl{�l},
6.1.1. inc=max{
T ,�}.
6.1.2. Set Ti =min{∑l∈Oic

tlc, Pic + inc}, i= 1, 2.
6.1.3. SIMAM(O1c, T1) and SIMAM(O2c,T2). Set tlc = tl, ∀l ∈ O.

6.2. Else,
6.2.1. inc=max{minl{�l},�}.
6.2.2. Let l∗ ∈ Oi∗ = argminl{�l}. Set Ti∗ = Pi∗ + inc.

SIMAM(Oi∗ ,Ti∗ ).
6.2.3. DM({t1c, t2c, . . . tpc}). Let (O1,O2) be the output. Set

Oic = Oi, i= 1, 2.
6.2.3.1. If Pic <2�+ 4�, i= 1, 2, then go to Step 5
6.2.3.2. Else, Calculate-t((O1c,O2c), tlc). Let tl be the

output. Set tlc = tl, ∀l ∈ O.
7. Calculate Tc =maxi{Pic + 4�+ 4�}, Cc =

∑
l∈O fl(tlc). Output tlc,

Tc, Cc, (O1,O2).
8. If Tc = TU , output c. STOP. Else, let c← c+ 1, go to Step 6.

Subroutine. Calculate-t:

Input: (O1,O2), tl.
Output: tl, ∀l ∈ O.
1. If

∑
l∈O1

tl =
∑

l∈O2
tl, output tl, ∀l ∈ O, return.

2. Else if
∑

l∈O1
tl >

∑
l∈O2

tl, then SIMAM(O2,
∑

l∈O1
tl), output tl,

∀l ∈ O, return.
3. Else if

∑
l∈O1

tl <
∑

l∈O2
tl, then SIMAM(O1,

∑
l∈O2

tl), output tl,
∀l ∈ O, return.

The EFFRONT-S2 algorithm generates a number of solutions on
the efficient frontier of the S2 cycle. A new nondominated solution
is generated by making use of the current solution at hand. Starting
from an initial solution, first an increment value for the cycle time
is determined and then the corresponding allocation of the opera-
tions and the processing time values are determined. After making
the initialization in Step 1, the upper bounds of the processing times
of the operations are calculated in Step 2 of the algorithm. In Step
3, the largest cycle time-smallest cost solution is determined by set-
ting all processing times to their upper bounds and allocating them
to the machines. Similarly, in Step 4, the smallest cycle time-largest
cost alternative is determined by setting all processing times to their
lower bounds and allocating the operations to the machines. How-
ever, in this case, after determining the allocation, if the total pro-
cessing time of one of the machines is less than the other one, the
processing times of the operations allocated to this machine are up-
dated using the SIMAM algorithm so that the total processing times
on the machines become identical. In Step 5, the breakpoints that
are necessary for Lemma 3 to construct sets J and J̄ are calculated.
In Step 6, the increment value for the cycle time in order to find the
next efficient solution is determined and the new allocations and the
new processing times of the operations are determined. More specif-
ically, the difference between the current cycle time value and the
next largest Ml value, l ∈ J̄, is calculated as the first candidate for the
increment value. The breakpoints which lead to a different allocation
are calculated from the DM algorithm and the minimum of these
is selected as the second candidate for the increment value. Finally,
the minimum of these two candidates is selected as the increment
value. If this increment is equal to the first candidate, then without
changing the allocation of the operations, the new processing times
of the operations are calculated. This is done by incrementing the
total processing time of both machines with the selected increment
value and applying the SIMAM algorithm to both machines indepen-
dently. On the other hand, if the second candidate is selected as the
increment value, then the machine, where the operation leading to
this increment value is allocated, is determined. The total process-
ing time of only this machine is updated by the selected increment
value. Using the SIMAM algorithm, the new processing times of only
the operations that are allocated to this machine are determined.
Next, the operations are reallocated using the DM method. If in the
resulting allocation one machine has a smaller total processing time
value than the other one, the processing times of the operations al-
located to this machine are updated using the SIMAM algorithm so
that the total processing times on both machines become identical
again. Note that, in any case, the increment value is bounded below
by E ∗10ln p/10. The heuristic continues until the cycle time value for
the next solution to be determined is equal to the upper bound of
the cycle time.

This heuristic procedure generates a set of nondominated solu-
tions which are not necessarily equally spaced. However, a large
number of points spread throughout the entire efficient frontier are
generated and the distance between two consecutive points is very
small. Additionally, any two solutions generated by the EFFRONT-S2
cannot dominate each other. Indeed, the EFFRONT-S2 algorithm gen-
erates a new solution starting with an initial solution. Let Tc <TU and
Cc be the cycle time and cost values of a solution generated by the
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32.94 1*

Cost
Mc 1 = {t3 = 1.8, t4 = 3.5},  Mc 2 = {t1 = 1.2, t2 = 2, t5 = 2.2}

Mc 1 = {t3 = 1.9, t4 = 3.5},  Mc 2 = {t1 = 1.2, t2 = 2, t5 = 2.2}
32.23

29.67
29.37

...

2

3

4

Mc 1 = {t2 = 2, t4 = 3.5},  Mc 2 = {t1 = 1.5, t3 = 1.8, t5 = 2.2}

Mc 1 = {t2 = 2.034, t4 = 3.5, },
Mc 2 = {t1 = 1.534, t3 = 1.8, t5 = 2.2}

16.4 ...

.

Cycle Time16.5 16.534

Fig. 1. Results of the first four iterations of the EFFRONT-S2 algorithm for Example 4.

algorithm. Using this solution, a new solution is generated by setting
T(c+1) = Tc + increment, where increment>0. Then, the EFFRONT-S2
algorithm allocates this increment in cycle time to the individual
processing times using the SIMAM algorithm as a subroutine, which
guarantees the allocation to be the most cost reducing alternative
(since the cost function is decreasing with respect to the process-
ing times). As a result, C(c+1)<Cc. This guarantees that Tc <Td and
Cc >Cd for any two solutions attained at iterations c and d, respec-
tively, by this algorithm.

The following example illustrates some iterations of the algorithm
and compares the S1 cycle with that of S2 for some data points.

Example 4. Let us consider the setting in Example 1 with
{l|tLl , tUl ,Kl ∗ Ul, al} = {1|1.2, 4.7, 15.87,−1.49}, {2|2, 2.8, 4.48,−1.56},
{3|1.8, 5.6, 23.72,−1.46}, {4|3.5, 4.2, 14.13,−1.70}, {5|2.2, 3.4, 6.66,
−1.38} and �= 0.5, �= 1. In Fig. 1, we depict the first four iterations
of the EFFRONT-S2 algorithm. In the first iteration (denoted as 1∗),
the minimum cycle time-maximum cost solution is found by solving
the AP formulation with commercial MIP solver GAMS-CPLEX 9.1
by setting all processing times to their lower bounds. Let T∗ be the
optimal objective function value of the AP. The solution found by
CPLEX is a nondominated solution if the processing times on both
machines are equal to each other. However, if the processing times
are not equal to each other as in this example, in order to determine
the minimum cycle time-maximum cost solution, the ECP formula-
tion is solved by using T∗ as the cycle time bound in iteration 2. This
new solution dominates the previous one since the two solutions
have identical cycle time values whereas the second solution has a
smaller manufacturing cost than the first one. Note that both the
allocation of the operations to the machines and the processing time
values may change from one solution to another. Furthermore, as
T increases, the processing times of some operations may decrease
depending on the allocated machine. These properties reveal the
complexity of the problem. In order to compare the S1 and the S2
cycles, let us use the same data and solve for both cycles. Using Eq.
(6), one can calculate the minimum cycle time for the S1 cycle by
setting all processing times to their lower bounds. This solution has
TS1 = 19.7 and the corresponding cost is 32.94. For the same cycle
time level, the S2 cycle has a cost of 17.61. Since the S2 cycle has a
smaller cost than the S1 cycle for the same cycle time, we say that
the S2 cycle dominates the S1 cycle for this cycle time level. When
we increase the cycle time to 21 time units and use the formulas
derived in Example 1, the minimum cost of the S1 cycle reduces to
25.33, whereas the minimum cost of the S2 cycle is 17.22. Hence,
the S2 cycle dominates the S1 cycle again. In fact, for the given data,
the S2 cycle dominates the S1 cycle for all feasible cycle time values.

However, if �= 1 and �= 6 and all other data remain the same, the
minimum cycle time that we can get with the S1 cycle is 52.7 and
the minimum cycle time for the S2 cycle is 54 meaning that the S1
cycle dominates the S2 cycle for this cycle time level.

5. Computational study

In this section we will test the efficiency of the EFFRONT-S2
algorithm under a specially tailored experimental design setting. This
algorithm works for any strictly convex and differentiable function.
In order to evaluate the algorithm we will consider CNC turning
operations for which the cost function is presented earlier. In order
to compare the results of the EFFRONT-S2 algorithm we require a
MINLP solver. One alternative is the GAMS-BARON 7.2.3. This com-
mercial solver implements deterministic global optimization algo-
rithms of the branch-and-bound type that are guaranteed to provide
global optima under fairly mild assumptions. However, especially
for large problem instances in terms of the number of operations,
the CPU time requirement of BARON is huge and it is not possible
to solve problems in a reasonable time. Hence, for large problem in-
stances we need another alternative for generating “good quality”
solutions in order to make a more comprehensive test of the perfor-
mance of the EFFRONT-S2 algorithm. For this purpose, commercial
solver GAMS-DICOPT2X-c is selected. The MINLP algorithm inside
DICOPT solves a series of NLP and MIP subproblems. Despite the
speed of the algorithm, DICOPT is unable to prove the optimality and
the quality of the solution provided. Hence, we also need to justify
the solution quality of the DICOPT which will be done by comparing
the results of DICOPT with BARON for small problem instances.

We coded the EFFRONT-S2 algorithm in C language and compiled
with Gnu C compiler. The DICOPT and EFFRONT-S2 methods were
run on a computer with 512MB memory and Pentium IV 3.00GHz
CPU. However, due to licensing limitations, the BARON software is
ran on a computer with 1294MB memory and Pentium III 1133MHz
CPU.

As listed in Table 2, there are four experimental factors that can
affect the efficiency of the methods. The number of operations af-
fects the problem size and thus the computational requirements. The
most important parameters that affect the efficiency of the meth-
ods are tL and tU . Using factors B, C and D, tL and tU parameters
are generated using tUl = U[C ∗ D,D], and tLl = B ∗ tUl , where U[a, b] is
a Uniform distribution on the interval [a, b]. Factors C and D affect
the shape of the manufacturing cost function and this in turn affects
the running times of the MINLP solvers. A small value for factor B
means a greater range between tL and tU and a small value for fac-
tor C means greater variability for both tL and tU values in which
case the MINLP solvers are expected to work better. The tU level is
another important parameter that increases the importance of the
allocation of the operations to the machines. If the tU level is high,
then the penalty of a poor allocation is high in which case the perfor-
mance of the DM algorithm used inside the EFFRONT-S2 algorithm
improves. In addition to these experimental design parameters, we
assume identical CNC machines with operating cost Co=0.5. Consis-
tent with earlier studies [10], al is selected from U[−1.7,−1.3] and
given these parameters, the required values for Kl ∗Ul can be calcu-
lated using, Kl ∗ Ul =−Co/al(tUl )

(al−1), ∀l ∈ {1, . . . ,p}.
Also note that the robot transportation time � and load/unload

time � do not have an effect on either the allocation of the operations
or on the processing times. However, if these parameters are too
large when compared to the processing times, this affects the values
that the cycle time can attain. For example, when all processing times
are set to their upper bounds and allocated to the machines, if the
processing times on both machines are less than 2� + 4�, then the
only value of the cycle time is 6�+8� as shown in Lemma 6. Hence, in
order to test the efficiency of the EFFRONT-S2 algorithm we assume
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Table 2
Experimental design factors.

Factor Definition Level 1 Level 2 Level 3

A Number of operations (p) 20 50 80
B tL–tU range 0.5 0.8
C tU variability 0.7 0.3
D tU level 5 10

Table 3
Completion statistics for DICOPT and BARON.

p DICOPT BARON

optcr = 0 optcr = 0.05 Time limit optcr = 0 optcr<0.05 optcr = 0.05

20 800 – – 65 (CPLEX) 594 141
50 154 612 34 A A A
80 104 653 43 A A A

A: BARON could not find a solution within the relative optimality gap (optcr=0.05)
in 48h.

that �=0 and �=0. In this way, we guarantee that the heuristic will
not stop in STEP 2 and a comprehensive test can be made.

Five replications are taken for each of the experimental settings,
(3 ∗ 2 ∗ 2 ∗ 2), which makes a total of 120 different problem set-
tings, so that we will approximate a total of 120 efficient frontiers.
In order to approximate these, we will use 20 different cycle time
bounds that are spread over the entire efficient frontier, totaling to
2400 problems. The minimum cycle time-maximum cost and the
maximum cycle time-minimum cost solutions are found by solving
the AP formulation with commercial MIP solver GAMS-CPLEX 9.1 by
setting all processing times to their lower bounds and to their upper
bounds, respectively. The remaining 18 problems are solved using a
MINLP solver. For small instances where p= 20 the model is solved
using BARON. However, due to CPU restrictions, even for these small
instances, it is not possible to run the models till the end. As a conse-
quence, we run the BARON model with a time limit of 1800 s. If the
run is not completed within this time limit but the relative optimal-
ity gap optcr�0.05, the model is stopped immediately. Otherwise, it
is run until optcr=0.05. That is, when optcr=0.05, the MINLP model
stops as soon as (Best Found− Best Possible)/Best Possible�0.05.

Similarly, for the DICOPT model which will be used to test our
algorithm for large instances, we first run the model with optcr = 0
for 900 s. If the model is not completed within this time limit, we
set optcr = 0.05 and continue the run for an additional 3600 s. As a
consequence, the solver either makes a normal completion before
900 s or stops with optcr=0.05 between somewhere in [900, 4500] s
after starting the run or stops due to time limit when it reaches to
4500 s.

Table 3 lists the number of instances with each stopping criteria
for both MINLP methods. Note that all of the completions where
optcr=0 listed for BARON are actually achieved by the CPLEX solver
for the AP formulations to determine the minimum cost-maximum
cycle time and maximum cost-minimum cycle time solutions. For
the instances where p = 50 and 80, BARON was unable to find a
feasible solution even with optcr = 0.05 in 48h. For p= 20, none of
the BARON runs are completed within the time limit when optcr=0.
Under DICOPT, for p=20 all 800 instances including the CPLEX runs
are completed within the 900 s time limit, whereas this number
reduces to 154 and 104 for p= 50 and 80, respectively.

The experimental design parameters as well as the manufactur-
ing cost parameters and the step size constant E jointly affect the
number of approximate efficient points generated by the EFFRONT-
S2 algorithm. Since this number is not known in advance, in order to
compare the results of different methods, we first run the EFFRONT-
S2 algorithm and generate a set of points. Then we choose 18 of these

Table 4
Summary of results.

p R1 R2 R3

>0 =0 <0 >0 =0 <0 >0 =0 <0

20 Number 90 6 704 387 2 411 699 101 0
Min (×10−6) 0.009 – −0.006 0.007 – −0.009 0.007 – –
Avg (×10−6) 0.436 – −31.402 0.785 – −49.361 2.982 – –
Max (×10−6) 6.721 – −5722.0 8.337 – −5722.0 67.585 – –

50 Number 154 5 641
Min (×10−6) 0.003 – −0.003 A A
Avg (×10−6) 0.099 – −2.435
Max (×10−6) 0.341 – −59.319

80 Number 214 5 581
Min (×10−6) 0.002 – −0.002 A A
Avg (×10−6) 0.073 – −26.095
Max (×10−6) 0.245 – −10653.6

A: BARON could not find a solution within the relative optimality gap (optcr=0.05)
in 48h.

other than the minimum cycle time-maximum cost and maximum
cycle time-minimum cost solutions such that each successive point
pair has (almost) equal separation and run the MINLP models for the
corresponding cycle time values of the 20 points. We use E=0.0001.
For notational simplicity let us denote F1(S,P) and F2(S,P) by F1 and
F2, respectively. We measured the relative difference between F1
values of different methods corresponding to identical F2 values. Let

R1 = (F1(EFFRONT − S2)− F1(DICOPT))/F1(DICOPT),

R2 = (F1(EFFRONT − S2)− F1(BARON))/F1(BARON),

R3 = (F1(DICOPT)− F1(BARON))/F1(BARON).

Table 4 provides results that can be used to compare the meth-
ods in terms of their average, minimum and maximum R1, R2 and R3
values. When we compare the EFFRONT-S2 algorithm with BARON
for the case when p = 20, we see that these two methods perform
similar to each other. The number of instances where each of these
methods performed better than the other is comparable (387 vs
411). However, the average value of R2 is greater (in absolute mag-
nitude) for the instances where EFFRONT-S2 performed better than
the instances where BARON performed better (−49.361 vs 0.785
(×10−6), respectively). We cannot compare these two methods for
p= 50 and 80 cases since we could not get a feasible solution using
BARON even with optcr = 0.05 in 48h. Hence, we will compare our
algorithm with DICOPT for these problem instances. However, since
DICOPT provides no information on the optimality gap, let us first
compare DICOPT with BARON and evaluate its solution quality. In
699 out of 800 cases, BARON performed better than DICOPT and in
the remaining ones they found the same solution. DICOPT could not
find a single better solution than BARON. However, the average R3
value is very small (2.982×10−6). This small difference suggests that
DICOPT can be used to evaluate the performance of the EFFRONT-
S2 algorithm for p = 50 and 80 cases. The R1 statistics show that,
although the average difference is very small (0.203×10−6), in most
of the cases the EFFRONT-S2 algorithm finds better solutions than
DICOPT. In 704, 641 and 581 out of 800 instances for 20, 50 and 80
operations, respectively, the EFFRONT-S2 algorithm found a better
solution than DICOPT. As the number of operations increases, this
performance seems to slightly decrease. This is due to the use of the
step size limit. This limit is 0.000069 for 20 operations case whereas
it is 0.012 for 80 operations case with E=0.0001. Using a smaller step
size limit increases the number and present the quality of the gen-
erated points. On the other hand, a smaller step size means greater
CPU time requirements.
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Table 5
Number of points generated by the EFFRONT-S2 and the CPU times.

p Factors N EFFRONT-S2 DICOPT BARON

B C D CPU time
(s)

Number of
points

CPU time
(s)

CPU time
(s)

20 0 0 0 100 27.1 29 207.6 52.3 1983.1
0 0 1 100 42.7 44 938.8 45.3 2006.2
0 1 0 100 16.5 18 416.2 50.7 1577.3
0 1 1 100 20.8 21 975.0 69.8 1636.3
1 0 0 100 9.0 9716.8 129.2 1692.2
1 0 1 100 20.1 19 871.2 121.4 1692.3
1 1 0 100 4.8 4745.6 118.5 1696.0
1 1 1 100 7.7 7324.0 93.6 1684.2

Average 18.6 19 524.4 85.1 1746.0

50 0 0 0 100 96.0 25 351.4 838.3
0 0 1 100 188.9 50 500.0 885.1
0 1 0 100 73.0 19 884.4 852.6
0 1 1 100 135.8 36 095.0 1060.2
1 0 0 100 38.1 9896.8 900.3
1 0 1 100 73.7 19 727.2 846.3
1 1 0 100 28.0 7763.4 873.2
1 1 1 100 53.4 14 440.4 882.1

Average 85.9 22 957.3 892.3

80 0 0 0 100 112.0 14 020.0 790.5
0 0 1 100 225.3 27 860.4 786.1
0 1 0 100 86.5 10 930.0 737.0
0 1 1 100 175.3 21 791.0 1857.6
1 0 0 100 43.4 5594.6 882.3
1 0 1 100 88.7 11 072.6 880.2
1 1 0 100 32.5 4240.6 882.4
1 1 1 100 66.2 8415.0 891.3

Average 103.8 12 990.5 963.4

Another factor for evaluating the quality of an algorithm is the
CPU time requirements. The total number of points generated by the
EFFRONT-S2 algorithm and the corresponding CPU times for each
factor combination for all methods are presented in Table 5. The CPU
times listed for DICOPT and BARON are only for generating 20 points
on the efficient frontier. The results indicate that in a very small
CPU time, the EFFRONT-S2 algorithm generates at least 600 times
more points than what DICOPT and BARON could generate. The in-
crease in the CPU time as the number of operations increases is very
small for the EFFRONT-S2 algorithm (from 18.6 for 20 operations to
203.7 for 80 operations). On the other hand, for DICOPT even for
50 operations, the average CPU time requirements (892 s) reaches
time limit of normal completion (900 s) and for BARON we are not

able to generate solutions for p= 50 and 80 cases even with setting
optcr = 0.05 after 48h.

6. Conclusion

In this study, we considered a bicriteria robotic cell scheduling
problem in a 2-machine robotic cell with highly flexible CNC ma-
chines. Instead of assuming the processing times to be fixed on each
machine, we assumed the allocations of the operations as well as
their processing times to be decision variables. We formulated the
problem as a Mixed Integer Nonlinear Programming (MINLP) model.
We developed an exact solution procedure for the S1 cycle. Since the
allocation problem for the S2 cycle is NP-Complete, we presented a
heuristic algorithm that generates a set of approximate efficient so-
lutions. We compared the results of the algorithm with commercial
MINLP solvers DICOPT and BARON. The proposed algorithm proved
to be very efficient in terms of the number and the quality of the
generated solutions and the computational requirements.
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