Near-field energy transfer using nanoemitters for optoelectronics

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage8177en_US
dc.citation.issueNumber45en_US
dc.citation.spage8158en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorGuzelturk, B.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2018-04-12T10:58:49Z
dc.date.available2018-04-12T10:58:49Zen_US
dc.date.issued2016en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractEffective utilization of excitation energy in nanoemitters requires control of exciton flow at the nanoscale. This can be readily achieved by exploiting near-field nonradiative energy transfer mechanisms such as dipole-dipole coupling (i.e., Förster resonance energy transfer) and simultaneous two-way electron transfer via exchange interaction (i.e., Dexter energy transfer). In this feature article, we review nonradiative energy transfer processes between emerging nanoemitters and exciton scavengers. To this end, we highlight the potential of colloidal semiconductor nanocrystals, organic semiconductors, and two-dimensional materials as efficient exciton scavengers for light harvesting and generation in optoelectronic applications. We present and discuss unprecedented exciton transfer in nanoemitter–nanostructured semiconductor composites enabled by strong light–matter interactions. We elucidate remarkably strong nonradiative energy transfer in self-assembling atomically flat colloidal nanoplatelets. In addition, we underscore the promise of organic semiconductor–nanocrystal hybrids for spin-triplet exciton harvesting via Dexter energy transfer. These efficient exciton transferring hybrids will empower desired optoelectronic properties such as long-range exciton diffusion, ultrafast multiexciton harvesting, and efficient photon upconversion, leading to the development of excitonic optoelectronic devices such as exciton-driven light-emitting diodes, lasers, and photodetectors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.identifier.doi10.1002/adfm.201603311en_US
dc.identifier.issn1616-301X
dc.identifier.urihttp://hdl.handle.net/11693/36970
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/adfm.201603311en_US
dc.source.titleAdvanced Functional Materialsen_US
dc.titleNear-field energy transfer using nanoemitters for optoelectronicsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Near-Field Energy Transfer Using Nanoemitters For Optoelectronics.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version