Age and gender normalization in kinship verification
buir.advisor | Dibeklioğlu, Hamdi | |
dc.contributor.author | Çalıkkasap, Oğuzhan | |
dc.date.accessioned | 2021-09-23T08:52:14Z | |
dc.date.available | 2021-09-23T08:52:14Z | |
dc.date.copyright | 2021-09 | |
dc.date.issued | 2021-09 | |
dc.date.submitted | 2021-09-22 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Thesis (Master's): Bilkent University, Department of Computer Engineering, İhsan Doğramacı Bilkent University, 2021. | en_US |
dc.description | Includes bibliographical references (leaves 74-82). | en_US |
dc.description.abstract | Kinship veri cation from facial images using deep learning is an interesting problem that is unsolved and gains growing attention of the research community. However, the most recent kinship veri cation systems su er from age- and genderrelated facial attributes that cause problems in kinship veri cation between subjects of di erent age and gender. In this study, we propose various methods to reduce the negative e ect of the age- and gender-related facial attributes in kinship veri cation to achieve a more robust veri cation model. The proposed approach utilizes the comprehensive modeling capabilities of the recent generative adversarial network architectures to model the age and gender of subjects and reduce their e ect in kinship veri cation, if not remove entirely. Furthermore, we conduct a thorough analysis over individual and combined e ects of age and gender normalization, performed in both image and latent space of the generative models. Lastly, we investigate the impact of additional emphasis on the facial identity information during the normalization process. Taking one of the most recent kinship veri cation models as our baseline, we show that gender normalization has reduced the veri cation performance gap between subject pairs with the same and di erent gender, up to 6%. Furthermore, joint normalization of age and gender improves the kinship veri cation accuracy up to 5% and 10% on two di erent in-the-wild kinship datasets. Therefore, this thesis proposes generic approaches to improve the reliability and robustness of kinship veri cation by normalizing the age and gender attributes without making changes in the core architecture of the employed kinship veri cation system. | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2021-09-23T08:52:14Z No. of bitstreams: 1 AGE AND GENDER NORMALIZATION IN KINSHIP VERIFICATION (SIGNED).pdf: 11281043 bytes, checksum: 6100e46829bfb21196310e02b56aa3f9 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2021-09-23T08:52:14Z (GMT). No. of bitstreams: 1 AGE AND GENDER NORMALIZATION IN KINSHIP VERIFICATION (SIGNED).pdf: 11281043 bytes, checksum: 6100e46829bfb21196310e02b56aa3f9 (MD5) Previous issue date: 2021-09 | en |
dc.description.statementofresponsibility | by Oğuzhan Çalıkkasap | en_US |
dc.embargo.release | 2022-03-22 | |
dc.format.extent | xiii, 90 leaves : color illustrations, charts, graphics ; 30 cm. | en_US |
dc.identifier.itemid | B133270 | |
dc.identifier.uri | http://hdl.handle.net/11693/76543 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Kinship veri cation | en_US |
dc.subject | Generative modeling | en_US |
dc.subject | Age and gender normalization | en_US |
dc.title | Age and gender normalization in kinship verification | en_US |
dc.title.alternative | Akrabalık doğrulamasında yaş ve cinsiyet normalizasyonu | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Computer Engineering | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- AGE AND GENDER NORMALIZATION IN KINSHIP VERIFICATION (SIGNED).pdf
- Size:
- 10.76 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: