Age and gender normalization in kinship verification

Available
The embargo period has ended, and this item is now available.

Date

2021-09

Editor(s)

Advisor

Dibeklioğlu, Hamdi

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
49
downloads

Series

Abstract

Kinship veri cation from facial images using deep learning is an interesting problem that is unsolved and gains growing attention of the research community. However, the most recent kinship veri cation systems su er from age- and genderrelated facial attributes that cause problems in kinship veri cation between subjects of di erent age and gender. In this study, we propose various methods to reduce the negative e ect of the age- and gender-related facial attributes in kinship veri cation to achieve a more robust veri cation model. The proposed approach utilizes the comprehensive modeling capabilities of the recent generative adversarial network architectures to model the age and gender of subjects and reduce their e ect in kinship veri cation, if not remove entirely. Furthermore, we conduct a thorough analysis over individual and combined e ects of age and gender normalization, performed in both image and latent space of the generative models. Lastly, we investigate the impact of additional emphasis on the facial identity information during the normalization process. Taking one of the most recent kinship veri cation models as our baseline, we show that gender normalization has reduced the veri cation performance gap between subject pairs with the same and di erent gender, up to 6%. Furthermore, joint normalization of age and gender improves the kinship veri cation accuracy up to 5% and 10% on two di erent in-the-wild kinship datasets. Therefore, this thesis proposes generic approaches to improve the reliability and robustness of kinship veri cation by normalizing the age and gender attributes without making changes in the core architecture of the employed kinship veri cation system.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type