Nanoscale selective area atomic layer deposition of TiO2 using e-beam patterned polymers
buir.contributor.author | Bıyıklı, Necmi | |
dc.citation.epage | 106119 | en_US |
dc.citation.issueNumber | 108 | en_US |
dc.citation.spage | 106109 | en_US |
dc.citation.volumeNumber | 6 | en_US |
dc.contributor.author | Haider A. | en_US |
dc.contributor.author | Yilmaz, M. | en_US |
dc.contributor.author | Deminskyi, P. | en_US |
dc.contributor.author | Eren, H. | en_US |
dc.contributor.author | Bıyıklı, Necmi | en_US |
dc.date.accessioned | 2018-04-12T10:47:54Z | |
dc.date.available | 2018-04-12T10:47:54Z | |
dc.date.issued | 2016 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.description.abstract | Here, we report nano-patterning of TiO2via area selective atomic layer deposition (AS-ALD) using an e-beam patterned growth inhibition polymer. Poly(methylmethacrylate) (PMMA), polyvinylpyrrolidone (PVP), and octafluorocyclobutane (C4F8) were the polymeric materials studied where PMMA and PVP were deposited using spin coating and C4F8 was grown using inductively coupled plasma (ICP) polymerization. TiO2 was grown at 150 °C using tetrakis(dimethylamido) titanium (TDMAT) and H2O as titanium and oxygen precursors, respectively. Contact angle, scanning electron microscopy (SEM), spectroscopic ellipsometry, and X-ray photoelectron spectroscopy (XPS) measurements were performed to investigate the blocking/inhibition effectiveness of polymer layers for AS-ALD of TiO2. TiO2 was grown with different numbers of growth cycles (maximum = 1200 cycles) on PMMA, PVP, and C4F8 coated substrates, where PMMA revealed complete growth inhibition up to the maximum number of growth cycles. On the other hand, PVP was able to block TiO2 growth up to 300 growth cycles only, whereas C4F8 showed no TiO2-growth blocking capability. Finally, mm-, μm-, and nm-scale patterned selective deposition of TiO2 was demonstrated exploiting a PMMA masking layer that has been patterned using e-beam lithography. SEM, energy-dispersive X-ray spectroscopy (EDX) line scan, EDX elemental mapping, and XPS line scan measurements cumulatively confirmed the self-aligned deposition of TiO2 features. The results presented for the first time demonstrate the feasibility of achieving self-aligned TiO2 deposition via TDMAT/H2O precursor combination and e-beam patterned PMMA blocking layers with a complete inhibition for >50 nm-thick films. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:47:54Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1039/c6ra23923d | en_US |
dc.identifier.issn | 2046-2069 | |
dc.identifier.uri | http://hdl.handle.net/11693/36670 | |
dc.language.iso | English | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.relation.isversionof | https://doi.org/10.1039/c6ra23923d | en_US |
dc.source.title | RSC Advances | en_US |
dc.subject | Deposition | en_US |
dc.subject | Energy dispersive spectroscopy | en_US |
dc.subject | Inductively coupled plasma | en_US |
dc.subject | Plasma polymerization | en_US |
dc.subject | Plastic coatings | en_US |
dc.subject | Scanning electron microscopy | en_US |
dc.subject | Spectroscopic ellipsometry | en_US |
dc.subject | Thick films | en_US |
dc.subject | Titanium | en_US |
dc.subject | Titanium dioxide | en_US |
dc.subject | X ray photoelectron spectroscopy | en_US |
dc.subject | X ray spectroscopy | en_US |
dc.subject | Blocking capability | en_US |
dc.subject | e-Beam lithography | en_US |
dc.subject | Energy dispersive X ray spectroscopy | en_US |
dc.subject | Inductively coupled plasma (ICP) | en_US |
dc.subject | Polyvinyl pyrrolidone | en_US |
dc.subject | Selective deposition | en_US |
dc.subject | Selective-area atomic layer deposition | en_US |
dc.subject | Tetrakis(dimethylamido)titanium | en_US |
dc.subject | Atomic layer deposition | en_US |
dc.title | Nanoscale selective area atomic layer deposition of TiO2 using e-beam patterned polymers | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Nanoscale selective area atomic layer deposition of TiO2 using e-beam patterned polymers.pdf
- Size:
- 2.14 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version