Effect of post-deposition annealing on the electrical properties of B-Ga2O3 thin films grown on p-Si by plasma-enhanced atomic layer deposition

buir.contributor.authorBıyıklı, Necmi
dc.citation.epage41504-1en_US
dc.citation.issueNumber4en_US
dc.citation.spage41504-6en_US
dc.citation.volumeNumber32en_US
dc.contributor.authorAltuntas, H.en_US
dc.contributor.authorDonmez, I.en_US
dc.contributor.authorAkgun, C. O.en_US
dc.contributor.authorBıyıklı, Necmien_US
dc.date.accessioned2015-07-28T12:03:05Z
dc.date.available2015-07-28T12:03:05Z
dc.date.issued2014-08en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractGa2O3 dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga 2O3 thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900°C for 30min under N2 ambient, films crystallized into β-form monoclinic structure. Electrical properties of the β-Ga2O3 thin films were then investigated by fabricating and characterizing Al/β-Ga2O3/p-Si metal-oxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Qeff) were calculated from the capacitance-voltage (C-V) curves using the flat-band voltage shift and were found as 2.6×1012, 1.9×1012, and 2.5×10 12 cm-2 for samples annealed at 700, 800, and 900°C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO2 layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900°C, and by the Frenkel-Poole emission model for film annealed at 800°C. Leakage current density was found to improve with annealing temperature. β-Ga2O3 thin film annealed at 800°C exhibited the highest reverse breakdown field value. © 2014 American Vacuum Society.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:03:05Z (GMT). No. of bitstreams: 1 11483.pdf: 1376659 bytes, checksum: 084f5b5f2eed108912c722972a3c09ba (MD5)en
dc.identifier.doi10.1116/1.4875935en_US
dc.identifier.eissn1944-2807
dc.identifier.issn0734-2101
dc.identifier.urihttp://hdl.handle.net/11693/12790
dc.instituteInstitute of Materials Science and Nanotechnologyen_US
dc.language.isoEnglishen_US
dc.publisherAmerican Vacuum Societyen_US
dc.relation.isversionofhttp://dx.doi.org/ 10.1116/1.4875935en_US
dc.source.titleJournal of Vacuum Science and Technology. Part A. Vacuum, Surfaces and Filmsen_US
dc.titleEffect of post-deposition annealing on the electrical properties of B-Ga2O3 thin films grown on p-Si by plasma-enhanced atomic layer depositionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11483.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format