Production line calibration with data analysis

buir.advisorDayanık, Savaş
dc.contributor.authorTaş, İsmail Burak
dc.date.accessioned2022-09-21T13:24:10Z
dc.date.available2022-09-21T13:24:10Z
dc.date.copyright2022-09
dc.date.issued2022-09
dc.date.submitted2022-09-20
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Industrial Engineering, İhsan Doğramacı Bilkent University, 2022.en_US
dc.descriptionIncludes bibliographical references (leaves 81-83).en_US
dc.description.abstractProduct weights can be statistically related to controllable and uncontrollable factors of the production processes. Uncontrollable factors may be correlated with controllable factors. We fitted a response surface approximator of product weights and found sub-optimal controllable factors’ values that minimize product weight. Furthermore, we found that the uncertainty of uncontrollable variables and the correlation among them may affect the result of product weight minimization. The company may implement these findings to reduce the cost of production. Also, we formulated a fully Bayesian experimental design problem to minimize product weight tolerance limits and built hierarchical models. Posterior distributions of the hierarchical models’ parameters can be simulated by a Gibbs sampler. However, we conclude that the effectiveness and convergence of the Gibbs sampler may not be robust to candidate design settings while searching over the design space to solve the experimental design problem.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-09-21T13:24:10Z No. of bitstreams: 1 B161345.pdf: 780553 bytes, checksum: f555d81fc2b9ea19444fdcf60a74c645 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-09-21T13:24:10Z (GMT). No. of bitstreams: 1 B161345.pdf: 780553 bytes, checksum: f555d81fc2b9ea19444fdcf60a74c645 (MD5) Previous issue date: 2022-09en
dc.description.statementofresponsibilityby İsmail Burak Taşen_US
dc.format.extentxiii, 83 leaves : illustrations, charts ; 30 cm.en_US
dc.identifier.itemidB161345
dc.identifier.urihttp://hdl.handle.net/11693/110562
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFully Bayesian experimental designen_US
dc.subjectBayesian hierarchical modelsen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectRobust designen_US
dc.titleProduction line calibration with data analysisen_US
dc.title.alternativeVeri analizi ile üretim hattı kalibrasyonuen_US
dc.typeThesisen_US
thesis.degree.disciplineIndustrial Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B161345.pdf
Size:
762.26 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: