Production line calibration with data analysis

Date
2022-09
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

Product weights can be statistically related to controllable and uncontrollable factors of the production processes. Uncontrollable factors may be correlated with controllable factors. We fitted a response surface approximator of product weights and found sub-optimal controllable factors’ values that minimize product weight. Furthermore, we found that the uncertainty of uncontrollable variables and the correlation among them may affect the result of product weight minimization. The company may implement these findings to reduce the cost of production. Also, we formulated a fully Bayesian experimental design problem to minimize product weight tolerance limits and built hierarchical models. Posterior distributions of the hierarchical models’ parameters can be simulated by a Gibbs sampler. However, we conclude that the effectiveness and convergence of the Gibbs sampler may not be robust to candidate design settings while searching over the design space to solve the experimental design problem.

Course
Other identifiers
Book Title
Keywords
Fully Bayesian experimental design, Bayesian hierarchical models, Markov chain Monte Carlo, Robust design
Citation
Published Version (Please cite this version)