Low power Zinc-Oxide based charge trapping memory with embedded silicon nanoparticles
Date
Advisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
In this work, a bottom-gate charge trapping memory device with Zinc-Oxide (ZnO) channel and 2-nm Si nanoparticles (Si-NPs) embedded in ZnO charge trapping layer is demonstrated. The active layers of the memory device are deposited by atomic layer deposition (ALD) and the Si-NPs are deposited by spin coating. The Si-NPs memory exhibits a threshold voltage (Vt) shift of 6.3 V at an operating voltage of -10/10 V while 2.6 V Vt shift is obtained without nanoparticles confirming that the Si-NPs act as energy states within the bandgap of the ZnO layer. In addition, a 3.4 V Vt is achieved at a very low operating voltage of -1 V/1 V due to the charging of the Si-NPs through Poole-Frenkel emission mechanism at an electric field across the tunnel oxide E > 0.36 MV/cm. The results highlight a promising technology for future ultra-low power memory devices.