Genetic neural networks to approximate feedback Nash equilibria in dynamic games

Date

2003

Authors

Alemdar, N. M.
Sirakaya, S.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
5
downloads

Series

Abstract

This paper develops a general purpose numerical method to compute the feedback Nash equilibria in dynamic games. Players' feedback strategies are first approximated by neural networks which are then trained online by parallel genetic algorithms to search over all time-invariant equilibrium strategies synchronously. To eliminate the dependence of training on the initial conditions of the game, the players use the same stationary feedback policies (the same networks), to repeatedly play the game from a number of initial states at any generation. The fitness of a given feedback strategy is then computed as the sum of payoffs over all initial states. The evolutionary equilibrium of the game between the genetic algorithms is the feedback Nash equilibrium of the dynamic game. An oligopoly model with investment is approximated as a numerical example. (C) 2003 Elsevier Ltd. All rights reserved.

Source Title

Computers and Mathematics with Applications

Publisher

Pergamon Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English