Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells

buir.contributor.authorArslan, Elif
buir.contributor.authorKoc,, Meryem Hatip
buir.contributor.authorUysal, Ozge
buir.contributor.authorDikecoglu, Begum
buir.contributor.authorTopal, Ahmet E.
buir.contributor.authorGarifullin, Ruslan
buir.contributor.authorOzkan, Alper D.
buir.contributor.authorTekinay, Ayse B.
buir.contributor.authorGüler, Mustafa O.
dc.citation.epage3130en_US
dc.citation.issueNumber10en_US
dc.citation.spage3114en_US
dc.citation.volumeNumber18en_US
dc.contributor.authorArslan, Elifen_US
dc.contributor.authorKoc,, Meryem Hatipen_US
dc.contributor.authorUysal, Ozgeen_US
dc.contributor.authorDikecoglu, Begumen_US
dc.contributor.authorTopal, Ahmet E.en_US
dc.contributor.authorGarifullin, Ruslanen_US
dc.contributor.authorOzkan, Alper D.en_US
dc.contributor.authorDana, A.en_US
dc.contributor.authorHermida-Merino, D.en_US
dc.contributor.authorCastelletto, V.en_US
dc.contributor.authorEdwards-Gayle, C.en_US
dc.contributor.authorBaday, S.en_US
dc.contributor.authorHamley, I.en_US
dc.contributor.authorTekinay, Ayse B.en_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.date.accessioned2018-04-12T11:09:32Z
dc.date.available2018-04-12T11:09:32Z
dc.date.issued2017-08en_US
dc.departmentInterdisciplinary Program in Neuroscience (NEUROSCIENCE)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentAysel Sabuncu Brain Research Center (BAM)en_US
dc.description.abstractChirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:09:32Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1021/acs.biomac.7b00773en_US
dc.identifier.issn1525-7797
dc.identifier.urihttp://hdl.handle.net/11693/37306
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.biomac.7b00773en_US
dc.source.titleBiomacromoleculesen_US
dc.subjectAdhesionen_US
dc.subjectBiomimeticsen_US
dc.subjectCellsen_US
dc.subjectChiralityen_US
dc.subjectCytologyen_US
dc.subjectMorphologyen_US
dc.subjectNanofibersen_US
dc.subjectNanostructured materialsen_US
dc.subjectPeptidesen_US
dc.subjectProteinsen_US
dc.subjectStereochemistryen_US
dc.subjectChemical and physical propertiesen_US
dc.subjectChondrogenic potentialen_US
dc.subjectCylindrical nanofibersen_US
dc.subjectExtracellular matrix proteinen_US
dc.subjectMechanotransductionen_US
dc.subjectOsteogenic potentialen_US
dc.subjectProtein functionsen_US
dc.subjectSynthetic peptideen_US
dc.subjectStem cellsen_US
dc.subjectAmino aciden_US
dc.subjectAmphophileen_US
dc.subjectBeta1 integrinen_US
dc.subjectEpitopeen_US
dc.subjectNanofiberen_US
dc.subjectPeptideen_US
dc.subjectActin cappingen_US
dc.subjectAtomic force microscopyen_US
dc.subjectBone developmenten_US
dc.subjectCell adhesionen_US
dc.subjectCell proliferationen_US
dc.subjectCell viabilityen_US
dc.subjectChiralityen_US
dc.subjectChondrogenesisen_US
dc.subjectConfocal microscopyen_US
dc.subjectControlled studyen_US
dc.subjectHUVEC cell lineen_US
dc.titleSupramolecular peptide nanofiber morphology affects mechanotransduction of stem cellsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Neuroscience Graduate Program.pdf
Size:
6.41 MB
Format:
Adobe Portable Document Format
Description:
Full printable version