Effective mass of electron in monolayer graphene: Electron-phonon interaction

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.issueNumber4en_US
dc.citation.volumeNumber113en_US
dc.contributor.authorTiras, E.en_US
dc.contributor.authorArdali, S.en_US
dc.contributor.authorTiras, T.en_US
dc.contributor.authorArslan, E.en_US
dc.contributor.authorCakmakyapan, S.en_US
dc.contributor.authorKazar, O.en_US
dc.contributor.authorHassan, J.en_US
dc.contributor.authorJanzén, E.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2016-02-08T09:41:18Z
dc.date.available2016-02-08T09:41:18Z
dc.date.issued2013-01-25en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractShubnikov-de Haas (SdH) and Hall effect measurements performed in a temperature range between 1.8 and 275 K, at an electric field up to 35 kV m -1 and magnetic fields up to 11 T, have been used to investigate the electronic transport properties of monolayer graphene on SiC substrate. The number of layers was determined by the use of the Raman spectroscopy. The carrier density and in-plane effective mass of electrons have been obtained from the periods and temperature dependencies of the amplitude of the SdH oscillations, respectively. The effective mass is in good agreement with the current results in the literature. The two-dimensional (2D) electron energy relaxations in monolayer graphene were also investigated experimentally. The electron temperature (Te) of hot electrons was obtained from the lattice temperature (TL) and the applied electric field dependencies of the amplitude of SdH oscillations. The experimental results for the electron temperature dependence of power loss indicate that the energy relaxation of electrons is due to acoustic phonon emission via mixed unscreened piezoelectric interaction and deformation-potential scattering.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:41:18Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013en
dc.identifier.doi10.1063/1.4789385en_US
dc.identifier.issn0021-8979
dc.identifier.urihttp://hdl.handle.net/11693/21109
dc.language.isoEnglishen_US
dc.publisherAIP Publishing LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4789385en_US
dc.source.titleJournal of Applied Physicsen_US
dc.subjectAcoustic phononsen_US
dc.subjectEffective massen_US
dc.subjectElectric field dependenciesen_US
dc.subjectElectron energiesen_US
dc.subjectElectronic transport propertiesen_US
dc.subjectEnergy relaxationen_US
dc.subjectHall effect measurementen_US
dc.subjectLattice temperaturesen_US
dc.subjectNumber of layersen_US
dc.subjectPower-lossesen_US
dc.subjectShubnikov-de Haasen_US
dc.subjectSiC substratesen_US
dc.subjectTemperature dependenceen_US
dc.subjectTemperature dependenciesen_US
dc.subjectTemperature rangeen_US
dc.subjectElectric fieldsen_US
dc.subjectElectron temperatureen_US
dc.subjectMonolayersen_US
dc.subjectRaman spectroscopyen_US
dc.subjectSemiconducting indium compoundsen_US
dc.subjectSilicon carbideen_US
dc.subjectTransport propertiesen_US
dc.subjectGrapheneen_US
dc.titleEffective mass of electron in monolayer graphene: Electron-phonon interactionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Effective mass of electron in monolayer graphene Electron-phonon interaction.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Full printable version