Optical properties of single-layer and bilayer arsenene phases

Date

2016-11

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B

Print ISSN

2469-9950

Electronic ISSN

Publisher

American Physical Society

Volume

94

Issue

20

Pages

205410-1 - 205410-9

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

An extensive investigation of the optical properties of single-layer buckled and washboard arsenene and their bilayers was performed, starting from layered three-dimensional crystalline phase of arsenic using density functional and many-body perturbation theories combined with random phase approximation. Electron-hole interactions were taken into account by solving the Bethe-Salpeter equation, suggesting first bound exciton energies on the order of 0.7 eV. Thus, many-body effects were found to be crucial for altering the optical properties of arsenene. The light absorption of single-layer and bilayer arsenene structures in general falls within the visible-ultraviolet spectral regime. Moreover, directional anisotropy, varying the number of layers, and applying homogeneous or uniaxial in-plane tensile strain were found to modify the optical properties of two-dimensional arsenene phases, which could be useful for diverse photovoltaic and optoelectronic applications.

Course

Other identifiers

Book Title

Keywords

Citation