Sparsity penalized mean-variance portfolio selection: computation and analysis

buir.advisorPınar, Mustafa Çelebi
dc.contributor.authorŞen, Buse
dc.date.accessioned2022-08-15T12:35:50Z
dc.date.available2022-08-15T12:35:50Z
dc.date.copyright2022-07
dc.date.issued2022-07
dc.date.submitted2022-08
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references (leaves 55-62).en_US
dc.description.abstractThe problem of selecting the best portfolio of assets, so-called mean-variance portfolio (MVP) selection, has become a prominent mathematical problem in the asset management framework. We consider the problem of MVP selection regu-larized with ℓ0-penalty term to control the sparsity of the portfolio. We analyze the structure of local and global minimizers, show the existence of global mini-mizers and develop a necessary condition for the global minimizers in the form of a componentwise lower bound for the global minimizers. We use the results in the design of a Branch-and-Bound algorithm. Extensive computational results with real-world data as well as comparisons with an off-the-shelf and state-of-the-art mixed-integer quadratic programming (MIQP) solver are reported. The behavior of the portfolio’s risk against the expected return and penalty parameter is ex-amined by numerical experiments. Finally, we present the accumulated returns over time according to the solutions yielded by the Branch-and-Bound and Lasso for the instances that the MIQP solver fails to find.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-08-15T12:35:50Z No. of bitstreams: 1 B161123.pdf: 1076716 bytes, checksum: 63e82d2ef2c1e2c82caf27552f90c249 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-08-15T12:35:50Z (GMT). No. of bitstreams: 1 B161123.pdf: 1076716 bytes, checksum: 63e82d2ef2c1e2c82caf27552f90c249 (MD5) Previous issue date: 2022-07en
dc.description.statementofresponsibilityby Buse Şenen_US
dc.embargo.release2023-02-01
dc.format.extentix, 62 leaves : illustrations (color), charts ; 30 cm.en_US
dc.identifier.itemidB161123
dc.identifier.urihttp://hdl.handle.net/11693/110441
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMean-variance portfolioen_US
dc.subjectSparse portfolio selectionen_US
dc.subjectCardinality con-strainten_US
dc.subjectℓ0 minimizationen_US
dc.subjectℓ0-regularized portfolioen_US
dc.subjectAsset managementen_US
dc.titleSparsity penalized mean-variance portfolio selection: computation and analysisen_US
dc.title.alternativeSeyreklik ile düzenlenmiş ortalama varyans portföy seçme problemi: hesaplama ve analizen_US
dc.typeThesisen_US
thesis.degree.disciplineIndustrial Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B161123.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: