Sparsity penalized mean-variance portfolio selection: computation and analysis

Available
The embargo period has ended, and this item is now available.

Date

2022-07

Editor(s)

Advisor

Pınar, Mustafa Çelebi

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
10
views
70
downloads

Series

Abstract

The problem of selecting the best portfolio of assets, so-called mean-variance portfolio (MVP) selection, has become a prominent mathematical problem in the asset management framework. We consider the problem of MVP selection regu-larized with ℓ0-penalty term to control the sparsity of the portfolio. We analyze the structure of local and global minimizers, show the existence of global mini-mizers and develop a necessary condition for the global minimizers in the form of a componentwise lower bound for the global minimizers. We use the results in the design of a Branch-and-Bound algorithm. Extensive computational results with real-world data as well as comparisons with an off-the-shelf and state-of-the-art mixed-integer quadratic programming (MIQP) solver are reported. The behavior of the portfolio’s risk against the expected return and penalty parameter is ex-amined by numerical experiments. Finally, we present the accumulated returns over time according to the solutions yielded by the Branch-and-Bound and Lasso for the instances that the MIQP solver fails to find.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type