Ternary pentagonal BNSi monolayer: Two-dimensional structure with potentially high carrier mobility and strong excitonic effects for photocatalytic applications

Date
2022-03-11
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review Materials
Print ISSN
Electronic ISSN
2475-9953
Publisher
American Physical Society
Volume
6
Issue
3
Pages
034004-1 - 034004-10
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In recent years many attempts have been made to discover new types of two-dimensional (2D) nanostructures with novel properties beyond the hexagonal crystals. The prediction of pentagraphene has sparked a great deal of research interest to investigate 2D pentagonal systems. In line with these efforts, in this paper, we propose a 2D ternary pentagonal monolayer of BNSi (penta-BNSi) and systematically investigate its structural, vibrational, mechanical, piezoelectric, electronic, photocatalytic, and optical properties by performing first-principles methods. We verify the stability of the penta-BNSi monolayer from the dynamical, thermal, and mechanical aspects based on phonon dispersion, ab initio molecular dynamics, and elastic tensor analysis, respectively. The mechanical properties are examined by calculating in-plane stiffness (Y2D), Poisson's ratio (ν), and ultimate tensile strength and penta-BNSi is found to be soft and ductile. The electronic structure and electronic transport calculations indicate that the penta-BNSi monolayer possesses a quasidirect band gap and anisotropic, potentially high carrier mobility. Due to the noncentral symmetric character and semiconducting feature, an intrinsic piezoelectric response emerges in the structure. In addition, penta-BNSi has a suitable band gap as well as proper band edge positions for photocatalytic water splitting within practical pH levels. The analysis of optical properties, including many-body effects, points out strong exciton binding and high light absorption in the visible and near-UV parts of the spectrum. Our findings not only expand the family of 2D pentagonal materials but also uncover an ideal ultrathin material for photocatalytic applications.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)