Fabrication of hafnia hollow nanofibers by atomic layer deposition using electrospun nanofiber templates

Date
2013
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Journal of Alloys and Compounds
Print ISSN
0925-8388
Electronic ISSN
Publisher
Elsevier
Volume
559
Issue
Pages
146 - 151
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Hafnia (HfO2) hollow nanofibers (HNs) were synthesized by atomic layer deposition (ALD) using electrospun nylon 6,6 nanofibers as templates. HfO2 layers were deposited on polymeric nanofibers at 200 °C by alternating reactant exposures of tetrakis(dimethylamido)hafnium and water. Polymeric nanofiber templates were subsequently removed by an ex situ calcination process at 500 °C under air ambient. Morphological and structural characterizations of the HN samples were conducted by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Freestanding network of HfO2 HNs was found to be polycrystalline with a monoclinic crystal structure. Elemental composition and chemical bonding states of the resulting HfO2 HNs were studied by using X-ray photoelectron spectroscopy. The presence of HfO2 was evidenced by high resolution scans of Hf 4f and O 1s with binding energies of 16.3-17.9 and 529.6 eV, respectively. Combination of electrospinning and ALD processes provided an opportunity to precisely control both diameter and wall thickness of the synthesized HfO2 HNs. © 2013 Elsevier B.V. All rights reserved.

Course
Other identifiers
Book Title
Keywords
Electrospinning, HfO2, Hollow nanofibers, Nylon 6,6
Citation
Published Version (Please cite this version)