Machine learning-based high-precision and real-time focus detection for laser material processing systems

buir.contributor.authorElahi, Sepehr
buir.contributor.orcidElahi, Sepehr|0000-0001-5494-6465
dc.citation.epage7en_US
dc.citation.spage1en_US
dc.citation.volumeNumber12138en_US
dc.contributor.authorPolat, Can
dc.contributor.authorYapıcı, Gizem Nuran
dc.contributor.authorElahi, Sepehr
dc.contributor.authorElahi, Parviz
dc.coverage.spatialStrasbourg, Franceen_US
dc.date.accessioned2023-02-20T13:29:42Z
dc.date.available2023-02-20T13:29:42Z
dc.date.issued2022-05-17
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractThis work explores a real-time and high precision focus finding for the ultrafast laser material processing for a different types of materials. Focus detection is essential for laser machining because an unfocused beam cannot affect the material and, at worst, a destructive effect. Here, we compare CNN and non-CNN-based approaches to focus detection, ultimately proposing a robust CNN model that can achieve high performance when only trained on a portion of the dataset. We use an ordinary lens (11 mm focal length, 0.25 NA) and a CMOS camera. Our robust CNN model achieved a focus prediction accuracy of 95% when identifying focus distances in -150, -140,...,0,...,150 µm, each step is about 7% of the Rayleigh length, and a high processing speed of 1000+ Hz on a CPU.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2023-02-20T13:29:42Z No. of bitstreams: 1 Machine_learning-based_high-precision_and_real-time_focus_detection_for_laser_material_processing_systems.pdf: 2257502 bytes, checksum: 931c110ee1cad29217e70c3eb6627808 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-20T13:29:42Z (GMT). No. of bitstreams: 1 Machine_learning-based_high-precision_and_real-time_focus_detection_for_laser_material_processing_systems.pdf: 2257502 bytes, checksum: 931c110ee1cad29217e70c3eb6627808 (MD5) Previous issue date: 2022-05-17en
dc.identifier.doi10.1117/12.2624383en_US
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/11693/111551
dc.language.isoEnglishen_US
dc.publisherS P I E - International Society for Optical Engineeringen_US
dc.relation.isversionofhttps://doi.org/10.1117/12.2624383en_US
dc.source.titleSPIE - International Society for Optical Engineering. Proceedingsen_US
dc.subjectLaser machiningen_US
dc.subjectMachine learningen_US
dc.subjectAuto focusen_US
dc.subjectNeural networksen_US
dc.subjectMachine visionen_US
dc.titleMachine learning-based high-precision and real-time focus detection for laser material processing systemsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Machine_learning-basMachine_learning-based_high-precision_and_real-time_focus_detection_for_laser_material_processing_systems.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: