Machine learning-based high-precision and real-time focus detection for laser material processing systems
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This work explores a real-time and high precision focus finding for the ultrafast laser material processing for a different types of materials. Focus detection is essential for laser machining because an unfocused beam cannot affect the material and, at worst, a destructive effect. Here, we compare CNN and non-CNN-based approaches to focus detection, ultimately proposing a robust CNN model that can achieve high performance when only trained on a portion of the dataset. We use an ordinary lens (11 mm focal length, 0.25 NA) and a CMOS camera. Our robust CNN model achieved a focus prediction accuracy of 95% when identifying focus distances in -150, -140,...,0,...,150 µm, each step is about 7% of the Rayleigh length, and a high processing speed of 1000+ Hz on a CPU.