A phase aberration correction method for ultrasound imaging
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A computationally efficient method for phase aberration correction in ultrasound imaging is presented. The method is based on time delay estimation via minimization of the sum of absolute differences between radio frequency samples of adjacent array elements. Effects of averaging estimated aberration patterns over scan angles, and truncation to a single bit wordlength are examined. Phase distortions due to near-field inhomogeneities are simulated using silicone rubber aberrators. Performance of the method is tested using experimental data. Simulation studies addressing different factors affecting efficiency of the method, such as the number of iterations, window length, and the number of scan angles used for averaging, are presented. Images of a standard resolution phantom are reconstructed and used for qualitative testing.