Thickness-tunable self-assembled colloidal nanoplatelet films enable ultrathin optical gain media

buir.contributor.authorErdem, Onur
buir.contributor.authorForoutan, Sina
buir.contributor.authorGheshlaghi, Negar
buir.contributor.authorAltıntaş, Yemliha
buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage6465en_US
dc.citation.issueNumber9en_US
dc.citation.spage6459en_US
dc.citation.volumeNumber20en_US
dc.contributor.authorErdem, Onur
dc.contributor.authorForoutan, Sina
dc.contributor.authorGheshlaghi, Negar
dc.contributor.authorGüzeltürk, B.
dc.contributor.authorAltıntaş, Yemliha
dc.contributor.authorDemir, Hilmi Volkan
dc.date.accessioned2021-03-03T10:48:47Z
dc.date.available2021-03-03T10:48:47Z
dc.date.issued2020
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractWe propose and demonstrate construction of highly uniform, multilayered superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using liquid interface self-assembly. These NPLs are sequentially deposited onto a solid substrate into slabs having monolayer-precise thickness across tens of cm2 areas. Because of near-unity surface coverage and excellent uniformity, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin film having 6 NPL layers, corresponding to a mere 42 nm thickness. Furthermore, systematic studies on optical gain of these NPL superstructures having thicknesses ranging from 6 to 15 layers revealed the gradual reduction in gain threshold with increasing number of layers, along with a continuous spectral shift of the ASE peak (∼18 nm). These observations can be explained by the change in the optical mode confinement factor with the NPL waveguide thickness and propagation wavelength. This bottom-up construction technique for thickness-tunable, three-dimensional NPL superstructures can be used for large-area device fabrication.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2021-03-03T10:48:47Z No. of bitstreams: 1 Thickness-tunable_self-assembled_colloidal_nanoplatelet_films_enable_ultrathin_optical_gain_media.pdf: 3686258 bytes, checksum: 1f2f7851726660254e367e3eb45a7efd (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-03T10:48:47Z (GMT). No. of bitstreams: 1 Thickness-tunable_self-assembled_colloidal_nanoplatelet_films_enable_ultrathin_optical_gain_media.pdf: 3686258 bytes, checksum: 1f2f7851726660254e367e3eb45a7efd (MD5) Previous issue date: 2020en
dc.identifier.doi10.1021/acs.nanolett.0c02153en_US
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11693/75710
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1021/acs.nanolett.0c02153en_US
dc.source.titleNano Lettersen_US
dc.subjectLiquid interface self-assemblyen_US
dc.subjectColloidal nanoplateletsen_US
dc.subjectPlanar waveguidesen_US
dc.subjectOptical gainen_US
dc.subjectAmplified spontaneous emissionen_US
dc.titleThickness-tunable self-assembled colloidal nanoplatelet films enable ultrathin optical gain mediaen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thickness-tunable_self-assembled_colloidal_nanoplatelet_films_enable_ultrathin_optical_gain_media.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
Description:
View / Download
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: