Application-specific heterogeneous network-on-chip design

Date

2011

Editor(s)

Advisor

Öztürk, Özcan

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

With increasing communication demands of processors and memory cores in Systems-on-Chips (SoCs), application-specific and scalable Network-on-Chips (NoCs) are emerged to interconnect processing cores and subsystems in Multiprocessor System-on-Chips (MPSoCs). The challenge of application-specific NoC design is to find the right balance among different trade-offs such as communication latency, power consumption, and chip area. This thesis introduces a novel heterogeneous NoC design approach where biologically inspired evolutionary algorithm and 2-dimensional rectangle packing algorithm are used to place the processing elements with various properties into a constrained NoC area according to the tasks generated by Task Graph for Free (TGFF). TGFF is one of the pseudo-random task graph generators used for scheduling and allocation. Based on a given task graph, we minimize the maximum execution time in a Heterogeneous Chip-Multiprocessor. We specifi- cally emphasize on the communication cost as it is a big overhead in a multi-core architecture. Experimental results show that our approach improves total communication latency up to 27% with modest power consumption.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)