Significance of the Mn-Oxidation state in catalytic and noncatalytic promotional effects of MnOx domains in formic acid dehydrogenation on Pd/MnOx interfaces

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Physical Chemistry C

Print ISSN

1932-7447

Electronic ISSN

Publisher

American Chemical Society

Volume

124

Issue

41

Pages

22529 - 22538

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
24
downloads

Series

Abstract

The influence of MnOx overlayers/nanoclusters deposited on the Pd(111) single-crystal model catalyst surface on the catalytic dehydrogenation of double-deuterated formic acid (FA, DCOOD) was studied under ultrahigh vacuum conditions via temperature-programmed desorption and X-ray photoelectron spectroscopy techniques. A significant boost in D2 generation was observed in the catalytic FA dehydrogenation on MnOx/Pd(111) as compared to that of a clean Pd(111) model catalyst, demonstrating the cooperative interaction between Pd(111) and MnOx sites. Maximum FA conversion was observed at a submonolayer MnOx surface coverage of 0.25 ML (monolayer) on Pd(111), whereas D2 formation was found to be suppressed when the Pd(111) surface was entirely covered with relatively thick (15 ML) MnOx overlayers. A direct correlation between increasing relative abundance of oxidized Mn surface states (i.e., Mn2+, Mn3+, and Mn4+) and increasing catalytic FA dehydrogenation was observed. Different modes of promotion of FA dehydrogenation via MnOx (i.e., catalytic promotion versus noncatalytic/stoichiometric promotion) were discussed as a function of the differences in the model catalyst preparation and the extent of oxidation of the MnOx overlayer.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)