Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis

buir.contributor.authorGüler, Mustafa O.
dc.citation.epage4611en_US
dc.citation.issueNumber26en_US
dc.citation.spage4605en_US
dc.citation.volumeNumber4en_US
dc.contributor.authorGulseren, G.en_US
dc.contributor.authorKhalily, M. A.en_US
dc.contributor.authorTekinay, A. B.en_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.date.accessioned2018-04-12T10:47:43Z
dc.date.available2018-04-12T10:47:43Z
dc.date.issued2016en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractEssential amino acids in catalytic sites of native enzymes are important in nature inspired catalyst designs. Active sites of enzymes contain the coordinated assembly of multiple amino acids, and catalytic action is generated by the dynamic interactions among multiple residues. However, catalysis studies are limited by the complex and dynamic structure of the enzyme; and it is difficult to exclusively attribute a given function to a specific residue. Minimalistic approaches involving artificial catalytic sites are promising for the investigation of the enzyme function in the absence of non-essential protein components, and self-assembling peptide nanostructures are especially advantageous in this context. Here we demonstrate the design and characterization of an enzyme-mimetic catalytic nanosystem presenting essential residues (Ser, His, Asp). The function of each residue and its combinations on the nanostructures in hydrolysis reaction was studied. The catalytic self-assembled nanostructures were used for efficient ester hydrolysis such as a model substrate (pNPA) and a natural substrate (acetylcholine) highlighting the key role of self-assembly in catalytic domain formation to test the efficiency of the de novo designed catalyst as a catalytic triad model.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:47:43Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1039/c6tb00795cen_US
dc.identifier.issn2050-7518
dc.identifier.urihttp://hdl.handle.net/11693/36666
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttps://doi.org/10.1039/c6tb00795cen_US
dc.source.titleJournal of Materials Chemistry Ben_US
dc.subjectAmino acidsen_US
dc.subjectBiomimeticsen_US
dc.subjectCatalystsen_US
dc.subjectEnzymesen_US
dc.subjectEstersen_US
dc.subjectHydrolysisen_US
dc.subjectPeptidesen_US
dc.subjectSelf assemblyen_US
dc.subjectDynamic interactionen_US
dc.subjectDynamic structureen_US
dc.subjectEssential amino acidsen_US
dc.subjectHydrolysis reactionen_US
dc.subjectNatural substratesen_US
dc.subjectSelf assembled nanostructuresen_US
dc.subjectSelf-assembled peptidesen_US
dc.subjectSelf-assembling peptidesen_US
dc.subjectNanostructuresen_US
dc.titleCatalytic supramolecular self-assembled peptide nanostructures for ester hydrolysisen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version