Reduced facet temperature in semiconductor lasers using electrically pumped windows

buir.contributor.authorDemir, Abdullah
buir.contributor.authorArslan, Seval
buir.contributor.authorGündoğdu, Sinan
dc.citation.epage7en_US
dc.citation.spage1en_US
dc.citation.volumeNumber10900en_US
dc.contributor.authorDemir, Abdullahen_US
dc.contributor.authorArslan, Sevalen_US
dc.contributor.authorGündoğdu, Sinanen_US
dc.coverage.spatialSan Francisco, California, United Statesen_US
dc.date.accessioned2020-01-30T13:58:04Z
dc.date.available2020-01-30T13:58:04Z
dc.date.issued2019-02
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.descriptionDate of Conference: 2-7 February 2019en_US
dc.descriptionConference name: SPIE LASE, 2019en_US
dc.description.abstractThe self-heating of semiconductor lasers contributes directly to facet heating and consequently to the critical temperature for catastrophic optical mirror damage (COMD) but the existing facet engineering methods do not address this issue. Targeting this problem, we report experimental and modeling results that demonstrate a new method achieving facet temperatures significantly lower than the laser cavity temperature in GaAs-based high-power semiconductor lasers by using electrically isolated and pumped windows. Owing to monolithic integration, the method does not introduce any penalty on the efficiency and output power of the laser. Thermal modeling results show that the laser output facet can be almost totally isolated from heat generated in the laser cavity and near cold-cavity facet temperatures are possible. The method can be applied to single emitters, laser bars, and monolithically integrated lasers in photonic integrated circuits to improve their reliability and operating performance.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2020-01-30T13:58:04Z No. of bitstreams: 1 Reduced_facet_temperature_in_semiconductor_lasers_using_electrically_pumped_windows.pdf: 968299 bytes, checksum: ba352e3f68a99d7e90347c39a9cd5dce (MD5)en
dc.description.provenanceMade available in DSpace on 2020-01-30T13:58:04Z (GMT). No. of bitstreams: 1 Reduced_facet_temperature_in_semiconductor_lasers_using_electrically_pumped_windows.pdf: 968299 bytes, checksum: ba352e3f68a99d7e90347c39a9cd5dce (MD5) Previous issue date: 2019-02en
dc.description.sponsorshipThe Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.identifier.doi10.1117/12.2509896en_US
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/11693/52941
dc.language.isoEnglishen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttps://doi.org/10.1117/12.2509896en_US
dc.source.titleProceedings High-Power Diode Laser Technology XVII, 2019en_US
dc.subjectSemiconductor laseren_US
dc.subjectHigh power laser diodeen_US
dc.subjectCatastrophic optical mirror damage (COMD)en_US
dc.subjectFacet temperatureen_US
dc.subjectFacet coolingen_US
dc.titleReduced facet temperature in semiconductor lasers using electrically pumped windowsen_US
dc.typeConference Paperen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Reduced_facet_temperature_in_semiconductor_lasers_using_electrically_pumped_windows.pdf
Size:
945.6 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: