On capacity-filling and substitutable choice rules

Date

2021-08

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Mathematics of Operations Research

Print ISSN

0364-765X

Electronic ISSN

1526-5471

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Volume

46

Issue

3

Pages

856 - 868

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
27
downloads

Series

Abstract

Each capacity-filling and substitutable choice rule is known to have a maximizer-collecting representation: There exists a list of priority orderings such that from each choice set that includes more alternatives than the capacity, the choice is the union of the priority orderings’ maximizers. We introduce the notion of a critical set and constructively prove that the number of critical sets for a choice rule determines its smallest-size maximizer-collecting representation. We show that responsive choice rules require the maximal number of priority orderings in their smallest-size maximizer-collecting representations among all capacity-filling and substitutable choice rules. We also analyze maximizer-collecting choice rules in which the number of priority orderings equals the capacity. We show that if the capacity is greater than three and the number of alternatives exceeds the capacity by at least two, then no capacity-filling and substitutable choice rule has a maximizer-collecting representation of the size equal to the capacity.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)