Cd-free Cu-doped ZnInS/ZnS Core/Shell nanocrystals: Controlled synthesis and photophysical properties
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Here, we report efficient composition-tunable Cu-doped ZnInS/ZnS (core and core/shell) colloidal nanocrystals (CNCs) synthesized by using a colloidal non-injection method. The initial precursors for the synthesis were used in oleate form rather than in powder form, resulting in a nearly defect-free photoluminescence (PL) emission. The change in Zn/In ratio tunes the percentage incorporation of Cu in CNCs. These highly monodisperse Cu-doped ZnInS CNCs having variable Zn/In ratios possess peak emission wavelength tunable from 550 to 650 nm in the visible spectrum. The quantum yield (QY) of these synthesized Cd-free CNCs increases from 6.0 to 65.0% after coating with a ZnS shell. The CNCs possessing emission from a mixed contribution of deep trap and dopant states to only dominant dopant-related Stokes-shifted emission are realized by a careful control of stoichiometric ratio of different reactant precursors during synthesis. The origin of this shift in emission was understood by using steady state and time-resolved fluorescence (TRF) spectroscopy studies. As a proof-of-concept demonstration, these blue excitable Cu-doped ZnInS/ZnS CNCs have been integrated with commercial blue LEDs to generate white-light emission (WLE). The suitable combination of these highly efficient doped CNCs results led to a Commission Internationale de l’Enclairage (CIE) color coordinates of (0.33, 0.31) at a color coordinate temperature (CCT) of 3694 K, with a luminous efficacy of optical radiation (LER) of 170 lm/Wopt and a color rendering index (CRI) of 88.