Mechanical control of periodic precipitation in stretchable gels to retrieve information on slastic deformation and for the complex patterning of matter
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Material design using nonequilibrium systems provides straightforward access to complexity levels that are possible through dynamic processes. Pattern formation through nonequilibrium processes and reaction–diffusion can be used to achieve this goal. Liesegang patterns (LPs) are a kind of periodic precipitation patterns formed through reaction–diffusion. So far, it has been shown that the periodic band structure of LPs and the geometry of the pattern can be controlled by experimental conditions and external fields (e.g., electrical or magnetic). However, there are no examples of these systems being used to retrieve information about the changes in the environment as they form, and there are no studies making use of these patterns for complex material preparation. This work shows the formation of LPs by a diffusion–precipitation reaction in a stretchable hydrogel and the control of the obtained patterns by the unprecedented and uncommon method of mechanical input. Additionally, how to use this protocol and how deviations from “LP behavior” of the patterns can be used to “write and store” information about the time, duration, extent, and direction of gel deformation are presented. Finally, an example of using complex patterning to deposit polypyrrole by using precipitation patterns is shown as a template.