Identification of preclinical implications for novel indole-benzimidazoles and phenothiazines using in vitro cancer cell line and in vivo zebrafish models

Available
The embargo period has ended, and this item is now available.

Date

2020-09

Editor(s)

Advisor

Karakayalı, Özlen Konu

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
14
views
69
downloads

Series

Abstract

Breast cancer (BC) and hepatocellular carcinoma (HCC) are two major health problems with significant mortality rates. Although drug therapies are available, therapeutic success remains limited. Because of low bioavailability, high toxicity and recurring drug resistance, novel therapeutic options are essential. In the present thesis, a multitude of in vitro, in silico and in vivo approaches were executed to test anti-cancer effects and preclinical potentials of novel indole-benzimidazoles and phenothiazines in BC and HCC, respectively. In the first component of the thesis, I evaluated BC cell line toxicity and estrogen receptor (ER) relationship of novel indole-benzimidazole derivatives using in vitro cancer lines, in vivo zebrafish embryos/larvae, and in silico comparative transcriptomics analyses. In the second part, antipsychotic compounds phenothiazines (PTZ) were repurposed for HCC therapy. Therefore, generic PTZ derivatives alone or in combination with sorafenib (SFB) were tested using in vitro cancer lines followed by zebrafish developmental assays and embryonic stage xenografts. In addition, RNAseq analyses were performed on trifluoperazine (TFP), SFB, and TFP+SFB combination treated Hep3B cells to understand synergistic/antagonistic effects of the drugs at gene expression level. Lastly, anti-HCC potential of novel PTZ derivatives were explored by in vitro and in vivo screenings. Moreover, effects of the novel and generic derivatives on neural pathways were evaluated by cholinesterase assays and motor response measurements. The findings of the dissertation present potential leads for conducting further preclinical studies tailored towards novel BC and HCC therapies.

Course

Other identifiers

Book Title

Degree Discipline

Neuroscience

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)