PP-MPI: A deep plug-and-play prior for magnetic particle imaging reconstruction
buir.contributor.author | Aşkın, Barış | |
buir.contributor.author | Güngör, Alper | |
buir.contributor.author | Sarıtaş, Emine Ülkü | |
buir.contributor.author | Çukur, Tolga | |
buir.contributor.orcid | Sarıtaş, Emine Ülkü|0000-0001-8551-1077 | |
buir.contributor.orcid | Güngör, Alper|0000-0002-3043-9124 | |
buir.contributor.orcid | Çukur, Tolga|0000-0002-2296-851X | |
dc.citation.epage | 114 | en_US |
dc.citation.spage | 105 | en_US |
dc.citation.volumeNumber | 13587 | en_US |
dc.contributor.author | Aşkın, Barış | |
dc.contributor.author | Güngör, Alper | |
dc.contributor.author | Alptekin Soydan, D. | |
dc.contributor.author | Sarıtaş, Emine Ülkü | |
dc.contributor.author | Top, C. B. | |
dc.contributor.author | Çukur, Tolga | |
dc.contributor.editor | Haq, Nandinee | |
dc.contributor.editor | Maier, Andreas | |
dc.contributor.editor | Qin, Chen | |
dc.contributor.editor | Johnson, Patricia | |
dc.contributor.editor | Würfl, Tobias | |
dc.contributor.editor | Yoo, Jaejun | |
dc.coverage.spatial | Singapore | en_US |
dc.date.accessioned | 2023-02-15T13:10:30Z | |
dc.date.available | 2023-02-15T13:10:30Z | |
dc.date.issued | 2022-09 | |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Conference Name: 5th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2022 | en_US |
dc.description | Date of Conference: 22 September 2022 | en_US |
dc.description.abstract | Magnetic particle imaging (MPI) is a recent modality that enables high contrast and frame-rate imaging of the magnetic nanoparticle (MNP) distribution. Based on a measured system matrix, MPI reconstruction can be cast as an inverse problem that is commonly solved via regularized iterative optimization. Yet, hand-crafted regularization terms can elicit suboptimal performance. Here, we propose a novel MPI reconstruction “PP-MPI” based on a deep plug-and-play (PP) prior embedded in a model-based iterative optimization. We propose to pre-train the PP prior based on a residual dense convolutional neural network (CNN) on an MPI-friendly dataset derived from magnetic resonance angiograms. The PP prior is then embedded into an alternating direction method of multiplier (ADMM) optimizer for reconstruction. A fast implementation is devised for 3D image reconstruction by fusing the predictions from 2D priors in separate rectilinear orientations. Our demonstrations show that PP-MPI outperforms state-of-the-art iterative techniques with hand-crafted regularizers on both simulated and experimental data. In particular, PP-MPI achieves on average 3.10 dB higher peak signal-to-noise ratio than the top-performing baseline under variable noise levels, and can process 12 frames/sec to permit real-time 3D imaging. | en_US |
dc.description.provenance | Submitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2023-02-15T13:10:30Z No. of bitstreams: 1 PP_MPI_A_deep_plug_and_play_prior_for_magnetic_particle_imaging_reconstruction.pdf: 785343 bytes, checksum: 62e15aa3ba7630874774b4bfff528476 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-15T13:10:30Z (GMT). No. of bitstreams: 1 PP_MPI_A_deep_plug_and_play_prior_for_magnetic_particle_imaging_reconstruction.pdf: 785343 bytes, checksum: 62e15aa3ba7630874774b4bfff528476 (MD5) Previous issue date: 2022-09 | en |
dc.identifier.doi | 10.1007/978-3-031-17247-2_11 | en_US |
dc.identifier.eisbn | 978-3-031-17247-2 | |
dc.identifier.isbn | 978-3-031-17246-5 | |
dc.identifier.uri | http://hdl.handle.net/11693/111367 | |
dc.language.iso | English | en_US |
dc.publisher | Springer Cham | en_US |
dc.relation.ispartofseries | Lecture Notes in Computer Science; | |
dc.relation.isversionof | https://doi.org/10.1007/978-3-031-17247-2_11 | en_US |
dc.source.title | Machine Learning for Medical Image Reconstruction | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Magnetic particle imaging | en_US |
dc.subject | Plug and play | en_US |
dc.subject | Reconstruction | en_US |
dc.title | PP-MPI: A deep plug-and-play prior for magnetic particle imaging reconstruction | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PP_MPI_A_deep_plug_and_play_prior_for_magnetic_particle_imaging_reconstruction.pdf
- Size:
- 766.94 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: