PP-MPI: A deep plug-and-play prior for magnetic particle imaging reconstruction

Series

Lecture Notes in Computer Science;

Abstract

Magnetic particle imaging (MPI) is a recent modality that enables high contrast and frame-rate imaging of the magnetic nanoparticle (MNP) distribution. Based on a measured system matrix, MPI reconstruction can be cast as an inverse problem that is commonly solved via regularized iterative optimization. Yet, hand-crafted regularization terms can elicit suboptimal performance. Here, we propose a novel MPI reconstruction “PP-MPI” based on a deep plug-and-play (PP) prior embedded in a model-based iterative optimization. We propose to pre-train the PP prior based on a residual dense convolutional neural network (CNN) on an MPI-friendly dataset derived from magnetic resonance angiograms. The PP prior is then embedded into an alternating direction method of multiplier (ADMM) optimizer for reconstruction. A fast implementation is devised for 3D image reconstruction by fusing the predictions from 2D priors in separate rectilinear orientations. Our demonstrations show that PP-MPI outperforms state-of-the-art iterative techniques with hand-crafted regularizers on both simulated and experimental data. In particular, PP-MPI achieves on average 3.10 dB higher peak signal-to-noise ratio than the top-performing baseline under variable noise levels, and can process 12 frames/sec to permit real-time 3D imaging.

Source Title

Machine Learning for Medical Image Reconstruction

Publisher

Springer Cham

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English