Modification of mesoporous LiMn2O4 and LiMn2−xCoxO4 by SILAR method for highly efficient water oxidation electrocatalysis

buir.contributor.authorKarakaya, Irmak
buir.contributor.authorKaradaş, Ferdi
buir.contributor.authorUlgut, Burak
buir.contributor.authorDağ, Ömer
dc.citation.issueNumber8en_US
dc.citation.spage2000353en_US
dc.citation.volumeNumber5en_US
dc.contributor.authorKarakaya, Irmak
dc.contributor.authorKaradaş, Ferdi
dc.contributor.authorUlgut, Burak
dc.contributor.authorDağ, Ömer
dc.date.accessioned2021-02-28T15:11:39Z
dc.date.available2021-02-28T15:11:39Z
dc.date.issued2020-06
dc.departmentDepartment of Chemistryen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIridium, ruthenium, and cobalt oxides are target materials as efficient and stable mesoporous metal oxide electrocatalysts for oxygen evolution reaction (OER). However, they are costly, toxic, and not practical for an efficient OER process. Here, a two‐step method is introduced, based on earth‐abundant manganese; molten salt‐assisted self‐assembly process to prepare mesoporous LiMn2−xCoxO4 (x = 0–0.5) modified electrodes, in which a systematic incorporation of Co(II) into the structure is performed using successive ionic layer adsorption and reaction followed by an annealing (SILAR‐AN) process. Applying SILAR‐AN over a stable m‐LiMn1.6Co0.4O4 electrode improves the OER performance; the Tafel slope and overpotential drop from 66 to 46 mV dec−1 and 304 to 265 mV (at 1.0 mA cm−2), respectively. The performance of the modified electrodes is comparable to benchmark IrO2 and RuO2 catalysts and much better than cobalt oxide electrodes. Electronic interactions between the neighboring Mn and Co sites synergistically amplify the OER performance of the m‐LiMn2−xCoxO4 electrodes. The data are compatible with an eight steps nucleophilic acid‐base reaction mechanism during OER.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-28T15:11:38Z No. of bitstreams: 1 Modification_of_mesoporous_LiMn2O4_and_LiMn2−xCoxO4_by_SILAR_method_for_highly_efficient_water_oxidation_electrocatalysis.pdf: 2561326 bytes, checksum: d4d997350ecc6614b8e357782548fe58 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-28T15:11:39Z (GMT). No. of bitstreams: 1 Modification_of_mesoporous_LiMn2O4_and_LiMn2−xCoxO4_by_SILAR_method_for_highly_efficient_water_oxidation_electrocatalysis.pdf: 2561326 bytes, checksum: d4d997350ecc6614b8e357782548fe58 (MD5) Previous issue date: 2020-06en
dc.embargo.release2021-06-01
dc.identifier.doi10.1002/admt.202000353en_US
dc.identifier.issn2365-709X
dc.identifier.urihttp://hdl.handle.net/11693/75641
dc.language.isoEnglishen_US
dc.publisherWileyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1002/admt.202000353en_US
dc.source.titleAdvanced Materials Technologiesen_US
dc.subjectlyotropic liquid crystalsen_US
dc.subjectMesoous thin filmsen_US
dc.subjectMolten salt assisted self-assemblyen_US
dc.subjectSILARen_US
dc.subjectWater oxidation electrocatalystsporous thin filmsen_US
dc.titleModification of mesoporous LiMn2O4 and LiMn2−xCoxO4 by SILAR method for highly efficient water oxidation electrocatalysisen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Modification_of_mesoporous_LiMn2O4_and_LiMn2−xCoxO4_by_SILAR_method_for_highly_efficient_water_oxidation_electrocatalysis.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: