Manganese oxide-based mesoporous thin-film electrodes: manganese disproportionation reaction in alkaline media

buir.contributor.authorKarakaya Durukan, Irmak
buir.contributor.authorUlu, Işıl
buir.contributor.authorDağ, Ömer
buir.contributor.orcidKarakaya Durukan, Irmak|0009-0006-9187-9138
buir.contributor.orcidUlu, Işıl|0000-0001-8104-0271
buir.contributor.orcidDağ, Ömer|0000-0002-1129-3246
dc.citation.epage6375
dc.citation.issueNumber11
dc.citation.spage6359
dc.citation.volumeNumber12
dc.contributor.authorKarakaya Durukan, Irmak
dc.contributor.authorUlu, Işıl
dc.contributor.authorDağ, Ömer
dc.date.accessioned2025-02-19T12:25:17Z
dc.date.available2025-02-19T12:25:17Z
dc.date.issued2024-02-01
dc.departmentDepartment of Chemistry
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.description.abstractIn this study, we explore the disproportionation reaction mechanism in alkaline media during the oxygen evolution reaction (OER) utilizing mesoporous electrodes, namely LiMn2O4 (m-LMO), Mn3O4 (m-Mn3O4), and Mn2P2O7 (m-MnPP). The electrodes are crafted through the molten salt-assisted self-assembly (MASA) process. The procedure commences with the application of a metal salt(s)–surfactant and metal salt–pyrophosphoric acid–surfactant (where the surfactant is P123) lyotropic liquid crystalline mesophase coating over a FTO surface by employing a clear ethanol or aqueous solution of the ingredients, followed by a subsequent calcination step at 300 °C. The electrodes are characterized by spectroscopic, diffraction, imaging, and electrochemical techniques. At low electrochemical potentials, Mn(III), and at more positive potentials, Mn(VI) disproportionation reactions make these materials highly unstable in alkaline media. The aforementioned degradation processes have been investigated by examination of the electrodes both prior to and after subsequent use in electrochemical measurements in various electrolytes. We found that the degradation process is relatively slow in m-LMO, but elevated in m-Mn3O4 and m-MnPP electrodes. m-LMO is fully converted into the λ-MnO2 phase upon its oxidation and more robust to decomposition; making it ultra-thin further improves its robustness. However, the m-Mn3O4 and m-MnPP electrodes behave similarly to each other and degrade more quickly (more pronounced in the latter), by releasing purple-colored permanganate ions into the electrolyte media. A Mn(VI) disproportionation reaction mechanism is suggested using the experimentally gathered spectroscopic, diffraction, and electrochemical data. The formation of Mn(VI) surface species and their electronegativity play vital roles in the disproportionation reaction.
dc.description.provenanceSubmitted by Mervenur Sarıgül (mervenur.sarigul@bilkent.edu.tr) on 2025-02-19T12:25:17Z No. of bitstreams: 1 Manganese_oxide-based_mesoporous_thin-film_electrodes_manganese_disproportionation_reaction_in_alkaline_media.pdf: 2066177 bytes, checksum: 6624879d7b1455b61435a5d09f49ba69 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-19T12:25:17Z (GMT). No. of bitstreams: 1 Manganese_oxide-based_mesoporous_thin-film_electrodes_manganese_disproportionation_reaction_in_alkaline_media.pdf: 2066177 bytes, checksum: 6624879d7b1455b61435a5d09f49ba69 (MD5) Previous issue date: 2024-02-01en
dc.identifier.doi10.1039/d3ta07973b
dc.identifier.eissn2050-7496
dc.identifier.issn2050-7488
dc.identifier.urihttps://hdl.handle.net/11693/116439
dc.language.isoEnglish
dc.publisherRoyal Society of Chemistry
dc.relation.isversionofhttps://dx.doi.org/10.1039/d3ta07973b
dc.rightsCC BY 3.0 (Attribution 3.0 Unported Deed)
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.source.titleJournal of Materials Chemistry A
dc.titleManganese oxide-based mesoporous thin-film electrodes: manganese disproportionation reaction in alkaline media
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Manganese_oxide-based_mesoporous_thin-film_electrodes_manganese_disproportionation_reaction_in_alkaline_media.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: