Transition metal salt catalysed green synthesis of mesoporous silica nanoparticles

buir.contributor.authorAmirzhanova, Assel
buir.contributor.authorUllah, Najeeb
buir.contributor.authorDağ, Ömer
buir.contributor.orcidAmirzhanova, Assel|0009-0006-5151-9330
buir.contributor.orcidDağ,Ömer|0000-0002-1129-3246
dc.citation.epage113233-11
dc.citation.spage113233-1
dc.citation.volumeNumber378
dc.contributor.authorAmirzhanova, Assel
dc.contributor.authorUllah, Najeeb
dc.contributor.authorDağ,Ömer
dc.date.accessioned2025-02-20T19:53:59Z
dc.date.available2025-02-20T19:53:59Z
dc.date.issued2024-06-26
dc.departmentDepartment of Chemistry
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.description.abstractConventionally, mesoporous silica nanoparticles are prepared by catalysing silicon alkoxides using acids or bases and are highly important in storage, delivery, and catalysis. Here, for the first time, we demonstrate that a transition metal ion (such as Ni(II), Co(II), and Mn(II)) also catalyses the hydrolysis and condensation reactions of silicon alkoxides in aqueous media without any additional acid or base to synthesize mesostructured and micro/mesostructured silica nanoparticles. An aqueous solution of a transition metal salt (specifically, nitrate salts of Ni(II), Co(II), or Mn(II), or chloride and sulphate salts of Ni(II)), 10-Lauryl ether (C12H25(OCH2CH2)10OH, C12E10) and cetyltrimethylammonium bromide (C16H33N(CH3)3Br, CTAB), and tetramethyl orthosilicate (TMOS) undergoes a precipitation reaction at room temperature, yielding ultra-small ordered mesostructured silica nanoparticles. These nanoparticles are subsequently calcined to produce mesoporous silica (meso-SiO2) with a high surface area (680–871 m2/g), large pore-volume (2.2–3.71 cm3/g), and small pore-size (1.2–3.0 nm). Moreover, the counter anions of the salts play an important role in the assembly process to obtain nanoparticles with an additional well-defined secondary pore (7.5–33.4 nm or larger). Coordinated water of the metal ion and methoxy group of the silica source react to produce a complex in which two hydroxy sides are in close vicinity to speed up the condensation reaction. We propose a hydrolysis and condensation reaction mechanism for TMOS to highlight the role of the metal ion as a catalyst.
dc.description.provenanceSubmitted by Muhammed Murat Uçar (murat.ucar@bilkent.edu.tr) on 2025-02-20T19:53:59Z No. of bitstreams: 1 Transition_metal_salt_catalysed_green_synthesis_of_mesoporous_silica_nanoparticles.pdf: 8230561 bytes, checksum: da043a6cfac1da3baac859841fed804c (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-20T19:53:59Z (GMT). No. of bitstreams: 1 Transition_metal_salt_catalysed_green_synthesis_of_mesoporous_silica_nanoparticles.pdf: 8230561 bytes, checksum: da043a6cfac1da3baac859841fed804c (MD5) Previous issue date: 2024-06-26en
dc.identifier.doi10.1016/j.micromeso.2024.113233
dc.identifier.eissn1873-3093
dc.identifier.issn1387-1811
dc.identifier.urihttps://hdl.handle.net/11693/116529
dc.language.isoEnglish
dc.publisherELSEVIER BV
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.micromeso.2024.113233
dc.rightsCC BY 4.0 Deed (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleMicroporous and Mesoporous Materials
dc.subjectColloidal suspensions
dc.subjectSurfactants
dc.subjectCopolymers
dc.subjectOxide
dc.subjectTriblock
dc.subjectFilms
dc.titleTransition metal salt catalysed green synthesis of mesoporous silica nanoparticles
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Transition_metal_salt_catalysed_green_synthesis_of_mesoporous_silica_nanoparticles.pdf
Size:
7.85 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: