Fabrication of thermally crosslinked hydrolyzed polymers of intrinsic microporosity (hpım)/polybenzoxazine electrospun nanofibrous membranes

buir.contributor.authorUyar, Tamer
buir.contributor.orcidUyar, Tamer|0000-0002-3989-4481
dc.citation.issueNumber1en_US
dc.citation.spage1800326en_US
dc.citation.volumeNumber220en_US
dc.contributor.authorSatilmis, B.en_US
dc.contributor.authorUyar, Tameren_US
dc.date.accessioned2019-02-23T15:09:16Z
dc.date.available2019-02-23T15:09:16Z
dc.date.issued2018en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn this study, thermally crosslinked hydrolyzed polymers of intrinsic microporosity (HPIM)/polybenzoxazine electrospun nanofibrous membranes (NFMs) are successfully produced. The nanofibers having 800 ± 260 to 670 ± 150 nm average fiber diameters from HPIM and blends of HPIM/ benzoxazine (BA‐a) ranging from HPIM:(BA‐a) weight ratio of 9:1 to 2:1 w/w are produced by electrospinning. Self‐standing HPIM/(BA‐a) NFMs are thermally step‐wise cured resulting in crosslinked HPIM/Poly(BA‐a) NFMs. Structural characterization of as‐electrospun HPIM/(BA‐a) and crosslinked HPIM/Poly(BA‐a) NFM is conducted by FT‐IR spectroscopy to trace the ring opening and crosslinking reactions. Elemental analysis and XPS studies show an increase in carbon content and reduction in nitrogen content due to the crosslinking reaction. Decomposition temperature (T d) of HPIM NFM increases from 218 to 270 °C with the crosslinking based on the DSC. DMA analysis shows that the mechanical strength of the NFMs has increased significantly with crosslinking. Young's moduli of HPIM NFM is increased from 16 ± 7 to 67 ± 1 MPa for crosslinked HPIM/Poly(BA‐a)%33 NFM. Similarly, higher storage modulus is observed for HPIM/Poly(BA‐a) NFMs compared to HPIM NFM. The crosslinked HPIM/Poly(BA‐a) NFMs keep their fibrous morphology after solvent treatment in dimethylformamide revealing their structural stability compared to pristine HPIM NFM.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2019-02-23T15:09:16Z No. of bitstreams: 1 Fabrication_of_Thermally_Crosslinked_Hydrolyzed_Polymers_of_Intrinsic_Microporosity_(HPIM)Polybenzoxazine_Electrospun_Nanofibrous_Membranes.pdf: 6795291 bytes, checksum: 5c999b951d95acb13ff23c18f553f49d (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-23T15:09:16Z (GMT). No. of bitstreams: 1 Fabrication_of_Thermally_Crosslinked_Hydrolyzed_Polymers_of_Intrinsic_Microporosity_(HPIM)Polybenzoxazine_Electrospun_Nanofibrous_Membranes.pdf: 6795291 bytes, checksum: 5c999b951d95acb13ff23c18f553f49d (MD5) Previous issue date: 2018en
dc.embargo.release2019-01-04en_US
dc.identifier.doi10.1002/macp.201800326en_US
dc.identifier.eissn1521-3935
dc.identifier.issn1022-1352
dc.identifier.urihttp://hdl.handle.net/11693/50570
dc.language.isoEnglishen_US
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.relation.isversionofhttps://doi.org/10.1002/macp.201800326en_US
dc.source.titleMacromolecular Chemistry and Physicsen_US
dc.titleFabrication of thermally crosslinked hydrolyzed polymers of intrinsic microporosity (hpım)/polybenzoxazine electrospun nanofibrous membranesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fabrication_of_Thermally_Crosslinked_Hydrolyzed_Polymers_of_Intrinsic_Microporosity_(HPIM)Polybenzoxazine_Electrospun_Nanofibrous_Membranes.pdf
Size:
6.48 MB
Format:
Adobe Portable Document Format
Description:
Full printable version
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: